Metamath Proof Explorer


Theorem cusgrcplgr

Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020)

Ref Expression
Assertion cusgrcplgr G ComplUSGraph G ComplGraph

Proof

Step Hyp Ref Expression
1 iscusgr G ComplUSGraph G USGraph G ComplGraph
2 1 simprbi G ComplUSGraph G ComplGraph