Metamath Proof Explorer


Theorem cusgrexg

Description: For each set there is a set of edges so that the set together with these edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 5-Nov-2020)

Ref Expression
Assertion cusgrexg V W e V e ComplUSGraph

Proof

Step Hyp Ref Expression
1 fveqeq2 y = x y = 2 x = 2
2 1 cbvrabv y 𝒫 V | y = 2 = x 𝒫 V | x = 2
3 2 cusgrexilem1 V W I y 𝒫 V | y = 2 V
4 2 cusgrexi V W V I y 𝒫 V | y = 2 ComplUSGraph
5 opeq2 e = I y 𝒫 V | y = 2 V e = V I y 𝒫 V | y = 2
6 5 eleq1d e = I y 𝒫 V | y = 2 V e ComplUSGraph V I y 𝒫 V | y = 2 ComplUSGraph
7 3 4 6 spcedv V W e V e ComplUSGraph