Metamath Proof Explorer


Theorem cusgrexilem2

Description: Lemma 2 for cusgrexi . (Contributed by AV, 12-Jan-2018) (Revised by AV, 10-Nov-2021)

Ref Expression
Hypothesis usgrexi.p P = x 𝒫 V | x = 2
Assertion cusgrexilem2 V W v V n V v e ran I P v n e

Proof

Step Hyp Ref Expression
1 usgrexi.p P = x 𝒫 V | x = 2
2 simpr V W v V v V
3 eldifi n V v n V
4 prelpwi v V n V v n 𝒫 V
5 2 3 4 syl2an V W v V n V v v n 𝒫 V
6 eldifsni n V v n v
7 6 necomd n V v v n
8 7 adantl V W v V n V v v n
9 hashprg v V n V v n v n = 2
10 2 3 9 syl2an V W v V n V v v n v n = 2
11 8 10 mpbid V W v V n V v v n = 2
12 fveqeq2 x = v n x = 2 v n = 2
13 rnresi ran I P = P
14 13 1 eqtri ran I P = x 𝒫 V | x = 2
15 12 14 elrab2 v n ran I P v n 𝒫 V v n = 2
16 5 11 15 sylanbrc V W v V n V v v n ran I P
17 sseq2 e = v n v n e v n v n
18 17 adantl V W v V n V v e = v n v n e v n v n
19 ssidd V W v V n V v v n v n
20 16 18 19 rspcedvd V W v V n V v e ran I P v n e