Metamath Proof Explorer


Theorem cusgrm1rusgr

Description: A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for k e. ZZ , then the assumption V =/= (/) could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypothesis cusgrrusgr.v V = Vtx G
Assertion cusgrm1rusgr G FinUSGraph V G ComplUSGraph G RegUSGraph V 1

Proof

Step Hyp Ref Expression
1 cusgrrusgr.v V = Vtx G
2 simpr G FinUSGraph V G ComplUSGraph G ComplUSGraph
3 1 fusgrvtxfi G FinUSGraph V Fin
4 3 adantr G FinUSGraph V V Fin
5 4 adantr G FinUSGraph V G ComplUSGraph V Fin
6 simpr G FinUSGraph V V
7 6 adantr G FinUSGraph V G ComplUSGraph V
8 1 cusgrrusgr G ComplUSGraph V Fin V G RegUSGraph V 1
9 2 5 7 8 syl3anc G FinUSGraph V G ComplUSGraph G RegUSGraph V 1
10 9 ex G FinUSGraph V G ComplUSGraph G RegUSGraph V 1
11 eqid VtxDeg G = VtxDeg G
12 1 11 rusgrprop0 G RegUSGraph V 1 G USGraph V 1 0 * v V VtxDeg G v = V 1
13 12 simp3d G RegUSGraph V 1 v V VtxDeg G v = V 1
14 1 vdiscusgr G FinUSGraph v V VtxDeg G v = V 1 G ComplUSGraph
15 14 adantr G FinUSGraph V v V VtxDeg G v = V 1 G ComplUSGraph
16 13 15 syl5 G FinUSGraph V G RegUSGraph V 1 G ComplUSGraph
17 10 16 impbid G FinUSGraph V G ComplUSGraph G RegUSGraph V 1