Metamath Proof Explorer


Theorem cusgrop

Description: A complete simple graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020)

Ref Expression
Assertion cusgrop G ComplUSGraph Vtx G iEdg G ComplUSGraph

Proof

Step Hyp Ref Expression
1 usgrop G USGraph Vtx G iEdg G USGraph
2 cplgrop G ComplGraph Vtx G iEdg G ComplGraph
3 1 2 anim12i G USGraph G ComplGraph Vtx G iEdg G USGraph Vtx G iEdg G ComplGraph
4 iscusgr G ComplUSGraph G USGraph G ComplGraph
5 iscusgr Vtx G iEdg G ComplUSGraph Vtx G iEdg G USGraph Vtx G iEdg G ComplGraph
6 3 4 5 3imtr4i G ComplUSGraph Vtx G iEdg G ComplUSGraph