Metamath Proof Explorer


Theorem cusgrrusgr

Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypothesis cusgrrusgr.v V = Vtx G
Assertion cusgrrusgr G ComplUSGraph V Fin V G RegUSGraph V 1

Proof

Step Hyp Ref Expression
1 cusgrrusgr.v V = Vtx G
2 cusgrusgr G ComplUSGraph G USGraph
3 2 3ad2ant1 G ComplUSGraph V Fin V G USGraph
4 hashnncl V Fin V V
5 nnm1nn0 V V 1 0
6 5 nn0xnn0d V V 1 0 *
7 4 6 syl6bir V Fin V V 1 0 *
8 7 imp V Fin V V 1 0 *
9 8 3adant1 G ComplUSGraph V Fin V V 1 0 *
10 cusgrcplgr G ComplUSGraph G ComplGraph
11 10 3ad2ant1 G ComplUSGraph V Fin V G ComplGraph
12 1 nbcplgr G ComplGraph v V G NeighbVtx v = V v
13 11 12 sylan G ComplUSGraph V Fin V v V G NeighbVtx v = V v
14 13 ralrimiva G ComplUSGraph V Fin V v V G NeighbVtx v = V v
15 3 anim1i G ComplUSGraph V Fin V v V G USGraph v V
16 15 adantr G ComplUSGraph V Fin V v V G NeighbVtx v = V v G USGraph v V
17 1 hashnbusgrvd G USGraph v V G NeighbVtx v = VtxDeg G v
18 16 17 syl G ComplUSGraph V Fin V v V G NeighbVtx v = V v G NeighbVtx v = VtxDeg G v
19 fveq2 G NeighbVtx v = V v G NeighbVtx v = V v
20 hashdifsn V Fin v V V v = V 1
21 20 3ad2antl2 G ComplUSGraph V Fin V v V V v = V 1
22 19 21 sylan9eqr G ComplUSGraph V Fin V v V G NeighbVtx v = V v G NeighbVtx v = V 1
23 18 22 eqtr3d G ComplUSGraph V Fin V v V G NeighbVtx v = V v VtxDeg G v = V 1
24 23 ex G ComplUSGraph V Fin V v V G NeighbVtx v = V v VtxDeg G v = V 1
25 24 ralimdva G ComplUSGraph V Fin V v V G NeighbVtx v = V v v V VtxDeg G v = V 1
26 14 25 mpd G ComplUSGraph V Fin V v V VtxDeg G v = V 1
27 simp1 G ComplUSGraph V Fin V G ComplUSGraph
28 ovex V 1 V
29 eqid VtxDeg G = VtxDeg G
30 1 29 isrusgr0 G ComplUSGraph V 1 V G RegUSGraph V 1 G USGraph V 1 0 * v V VtxDeg G v = V 1
31 27 28 30 sylancl G ComplUSGraph V Fin V G RegUSGraph V 1 G USGraph V 1 0 * v V VtxDeg G v = V 1
32 3 9 26 31 mpbir3and G ComplUSGraph V Fin V G RegUSGraph V 1