Metamath Proof Explorer


Theorem cusgrsizeinds

Description: Part 1 of induction step in cusgrsize . The size of a complete simple graph with n vertices is ( n - 1 ) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020)

Ref Expression
Hypotheses cusgrsizeindb0.v V = Vtx G
cusgrsizeindb0.e E = Edg G
cusgrsizeinds.f F = e E | N e
Assertion cusgrsizeinds G ComplUSGraph V Fin N V E = V - 1 + F

Proof

Step Hyp Ref Expression
1 cusgrsizeindb0.v V = Vtx G
2 cusgrsizeindb0.e E = Edg G
3 cusgrsizeinds.f F = e E | N e
4 cusgrusgr G ComplUSGraph G USGraph
5 1 isfusgr G FinUSGraph G USGraph V Fin
6 fusgrfis G FinUSGraph Edg G Fin
7 5 6 sylbir G USGraph V Fin Edg G Fin
8 7 a1d G USGraph V Fin N V Edg G Fin
9 8 ex G USGraph V Fin N V Edg G Fin
10 4 9 syl G ComplUSGraph V Fin N V Edg G Fin
11 10 3imp G ComplUSGraph V Fin N V Edg G Fin
12 eqid e E | N e = e E | N e
13 12 3 elnelun e E | N e F = E
14 13 eqcomi E = e E | N e F
15 14 fveq2i E = e E | N e F
16 15 a1i G ComplUSGraph V Fin N V Edg G Fin E = e E | N e F
17 2 eqcomi Edg G = E
18 17 eleq1i Edg G Fin E Fin
19 rabfi E Fin e E | N e Fin
20 18 19 sylbi Edg G Fin e E | N e Fin
21 20 adantl G ComplUSGraph V Fin N V Edg G Fin e E | N e Fin
22 4 anim1i G ComplUSGraph V Fin G USGraph V Fin
23 22 5 sylibr G ComplUSGraph V Fin G FinUSGraph
24 1 2 3 usgrfilem G FinUSGraph N V E Fin F Fin
25 23 24 stoic3 G ComplUSGraph V Fin N V E Fin F Fin
26 18 25 syl5bb G ComplUSGraph V Fin N V Edg G Fin F Fin
27 26 biimpa G ComplUSGraph V Fin N V Edg G Fin F Fin
28 12 3 elneldisj e E | N e F =
29 28 a1i G ComplUSGraph V Fin N V Edg G Fin e E | N e F =
30 hashun e E | N e Fin F Fin e E | N e F = e E | N e F = e E | N e + F
31 21 27 29 30 syl3anc G ComplUSGraph V Fin N V Edg G Fin e E | N e F = e E | N e + F
32 1 2 cusgrsizeindslem G ComplUSGraph V Fin N V e E | N e = V 1
33 32 adantr G ComplUSGraph V Fin N V Edg G Fin e E | N e = V 1
34 33 oveq1d G ComplUSGraph V Fin N V Edg G Fin e E | N e + F = V - 1 + F
35 16 31 34 3eqtrd G ComplUSGraph V Fin N V Edg G Fin E = V - 1 + F
36 11 35 mpdan G ComplUSGraph V Fin N V E = V - 1 + F