Metamath Proof Explorer


Theorem cuteq0

Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Hypotheses cuteq0.1 φAs0s
cuteq0.2 φ0ssB
Assertion cuteq0 φA|sB=0s

Proof

Step Hyp Ref Expression
1 cuteq0.1 φAs0s
2 cuteq0.2 φ0ssB
3 bday0s bday0s=
4 3 a1i φbday0s=
5 0sno 0sNo
6 sneq y=0sy=0s
7 6 breq2d y=0sAsyAs0s
8 6 breq1d y=0sysB0ssB
9 7 8 anbi12d y=0sAsyysBAs0s0ssB
10 fveqeq2 y=0sbdayy=bday0s=
11 9 10 anbi12d y=0sAsyysBbdayy=As0s0ssBbday0s=
12 11 rspcev 0sNoAs0s0ssBbday0s=yNoAsyysBbdayy=
13 5 12 mpan As0s0ssBbday0s=yNoAsyysBbdayy=
14 1 2 4 13 syl21anc φyNoAsyysBbdayy=
15 bdayfn bdayFnNo
16 ssrab2 xNo|AsxxsBNo
17 fvelimab bdayFnNoxNo|AsxxsBNobdayxNo|AsxxsByxNo|AsxxsBbdayy=
18 15 16 17 mp2an bdayxNo|AsxxsByxNo|AsxxsBbdayy=
19 sneq x=yx=y
20 19 breq2d x=yAsxAsy
21 19 breq1d x=yxsBysB
22 20 21 anbi12d x=yAsxxsBAsyysB
23 22 rexrab yxNo|AsxxsBbdayy=yNoAsyysBbdayy=
24 18 23 bitri bdayxNo|AsxxsByNoAsyysBbdayy=
25 14 24 sylibr φbdayxNo|AsxxsB
26 int0el bdayxNo|AsxxsBbdayxNo|AsxxsB=
27 25 26 syl φbdayxNo|AsxxsB=
28 3 27 eqtr4id φbday0s=bdayxNo|AsxxsB
29 5 elexi 0sV
30 29 snnz 0s
31 sslttr As0s0ssB0sAsB
32 30 31 mp3an3 As0s0ssBAsB
33 1 2 32 syl2anc φAsB
34 eqscut AsB0sNoA|sB=0sAs0s0ssBbday0s=bdayxNo|AsxxsB
35 33 5 34 sylancl φA|sB=0sAs0s0ssBbday0s=bdayxNo|AsxxsB
36 1 2 28 35 mpbir3and φA|sB=0s