Metamath Proof Explorer


Theorem cuteq0

Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Hypotheses cuteq0.1 φ A s 0 s
cuteq0.2 φ 0 s s B
Assertion cuteq0 φ A | s B = 0 s

Proof

Step Hyp Ref Expression
1 cuteq0.1 φ A s 0 s
2 cuteq0.2 φ 0 s s B
3 bday0s bday 0 s =
4 3 a1i φ bday 0 s =
5 0sno 0 s No
6 sneq y = 0 s y = 0 s
7 6 breq2d y = 0 s A s y A s 0 s
8 6 breq1d y = 0 s y s B 0 s s B
9 7 8 anbi12d y = 0 s A s y y s B A s 0 s 0 s s B
10 fveqeq2 y = 0 s bday y = bday 0 s =
11 9 10 anbi12d y = 0 s A s y y s B bday y = A s 0 s 0 s s B bday 0 s =
12 11 rspcev 0 s No A s 0 s 0 s s B bday 0 s = y No A s y y s B bday y =
13 5 12 mpan A s 0 s 0 s s B bday 0 s = y No A s y y s B bday y =
14 1 2 4 13 syl21anc φ y No A s y y s B bday y =
15 bdayfn bday Fn No
16 ssrab2 x No | A s x x s B No
17 fvelimab bday Fn No x No | A s x x s B No bday x No | A s x x s B y x No | A s x x s B bday y =
18 15 16 17 mp2an bday x No | A s x x s B y x No | A s x x s B bday y =
19 sneq x = y x = y
20 19 breq2d x = y A s x A s y
21 19 breq1d x = y x s B y s B
22 20 21 anbi12d x = y A s x x s B A s y y s B
23 22 rexrab y x No | A s x x s B bday y = y No A s y y s B bday y =
24 18 23 bitri bday x No | A s x x s B y No A s y y s B bday y =
25 14 24 sylibr φ bday x No | A s x x s B
26 int0el bday x No | A s x x s B bday x No | A s x x s B =
27 25 26 syl φ bday x No | A s x x s B =
28 3 27 eqtr4id φ bday 0 s = bday x No | A s x x s B
29 5 elexi 0 s V
30 29 snnz 0 s
31 sslttr A s 0 s 0 s s B 0 s A s B
32 30 31 mp3an3 A s 0 s 0 s s B A s B
33 1 2 32 syl2anc φ A s B
34 eqscut A s B 0 s No A | s B = 0 s A s 0 s 0 s s B bday 0 s = bday x No | A s x x s B
35 33 5 34 sylancl φ A | s B = 0 s A s 0 s 0 s s B bday 0 s = bday x No | A s x x s B
36 1 2 28 35 mpbir3and φ A | s B = 0 s