Metamath Proof Explorer


Theorem cvbr

Description: Binary relation expressing B covers A , which means that B is larger than A and there is nothing in between. Definition 3.2.18 of PtakPulmannova p. 68. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvbr A C B C A B A B ¬ x C A x x B

Proof

Step Hyp Ref Expression
1 eleq1 y = A y C A C
2 1 anbi1d y = A y C z C A C z C
3 psseq1 y = A y z A z
4 psseq1 y = A y x A x
5 4 anbi1d y = A y x x z A x x z
6 5 rexbidv y = A x C y x x z x C A x x z
7 6 notbid y = A ¬ x C y x x z ¬ x C A x x z
8 3 7 anbi12d y = A y z ¬ x C y x x z A z ¬ x C A x x z
9 2 8 anbi12d y = A y C z C y z ¬ x C y x x z A C z C A z ¬ x C A x x z
10 eleq1 z = B z C B C
11 10 anbi2d z = B A C z C A C B C
12 psseq2 z = B A z A B
13 psseq2 z = B x z x B
14 13 anbi2d z = B A x x z A x x B
15 14 rexbidv z = B x C A x x z x C A x x B
16 15 notbid z = B ¬ x C A x x z ¬ x C A x x B
17 12 16 anbi12d z = B A z ¬ x C A x x z A B ¬ x C A x x B
18 11 17 anbi12d z = B A C z C A z ¬ x C A x x z A C B C A B ¬ x C A x x B
19 df-cv = y z | y C z C y z ¬ x C y x x z
20 9 18 19 brabg A C B C A B A C B C A B ¬ x C A x x B
21 20 bianabs A C B C A B A B ¬ x C A x x B