Metamath Proof Explorer


Theorem cvdmd

Description: The covering property implies the dual modular pair property. Lemma 7.5.2 of MaedaMaeda p. 31. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvdmd A C B C B A B A 𝑀 * B

Proof

Step Hyp Ref Expression
1 choccl A C A C
2 choccl B C B C
3 cvmd A C B C A B B A 𝑀 B
4 3 3expia A C B C A B B A 𝑀 B
5 1 2 4 syl2an A C B C A B B A 𝑀 B
6 simpr A C B C B C
7 chjcl A C B C A B C
8 cvcon3 B C A B C B A B A B B
9 6 7 8 syl2anc A C B C B A B A B B
10 chdmj1 A C B C A B = A B
11 10 breq1d A C B C A B B A B B
12 9 11 bitrd A C B C B A B A B B
13 dmdmd A C B C A 𝑀 * B A 𝑀 B
14 5 12 13 3imtr4d A C B C B A B A 𝑀 * B
15 14 3impia A C B C B A B A 𝑀 * B