Metamath Proof Explorer


Theorem cvexch

Description: The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvexch A C B C A B B A A B

Proof

Step Hyp Ref Expression
1 ineq1 A = if A C A A B = if A C A B
2 1 breq1d A = if A C A A B B if A C A B B
3 id A = if A C A A = if A C A
4 oveq1 A = if A C A A B = if A C A B
5 3 4 breq12d A = if A C A A A B if A C A if A C A B
6 2 5 bibi12d A = if A C A A B B A A B if A C A B B if A C A if A C A B
7 ineq2 B = if B C B if A C A B = if A C A if B C B
8 id B = if B C B B = if B C B
9 7 8 breq12d B = if B C B if A C A B B if A C A if B C B if B C B
10 oveq2 B = if B C B if A C A B = if A C A if B C B
11 10 breq2d B = if B C B if A C A if A C A B if A C A if A C A if B C B
12 9 11 bibi12d B = if B C B if A C A B B if A C A if A C A B if A C A if B C B if B C B if A C A if A C A if B C B
13 ifchhv if A C A C
14 ifchhv if B C B C
15 13 14 cvexchi if A C A if B C B if B C B if A C A if A C A if B C B
16 6 12 15 dedth2h A C B C A B B A A B