Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
cvgcau
Next ⟩
cvgcaule
Metamath Proof Explorer
Ascii
Unicode
Theorem
cvgcau
Description:
A convergent function is Cauchy.
(Contributed by
Glauco Siliprandi
, 15-Feb-2025)
Ref
Expression
Hypotheses
cvgcau.1
⊢
Ⅎ
_
j
F
cvgcau.2
⊢
Ⅎ
_
k
F
cvgcau.3
⊢
φ
→
M
∈
Z
cvgcau.4
⊢
φ
→
F
∈
V
cvgcau.5
⊢
Z
=
ℤ
≥
M
cvgcau.6
⊢
φ
→
F
∈
dom
⁡
⇝
cvgcau.7
⊢
φ
→
X
∈
ℝ
+
Assertion
cvgcau
⊢
φ
→
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
X
Proof
Step
Hyp
Ref
Expression
1
cvgcau.1
⊢
Ⅎ
_
j
F
2
cvgcau.2
⊢
Ⅎ
_
k
F
3
cvgcau.3
⊢
φ
→
M
∈
Z
4
cvgcau.4
⊢
φ
→
F
∈
V
5
cvgcau.5
⊢
Z
=
ℤ
≥
M
6
cvgcau.6
⊢
φ
→
F
∈
dom
⁡
⇝
7
cvgcau.7
⊢
φ
→
X
∈
ℝ
+
8
breq2
⊢
x
=
X
→
F
⁡
k
−
F
⁡
j
<
x
↔
F
⁡
k
−
F
⁡
j
<
X
9
8
anbi2d
⊢
x
=
X
→
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
x
↔
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
X
10
9
rexralbidv
⊢
x
=
X
→
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
x
↔
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
X
11
5
3
eluzelz2d
⊢
φ
→
M
∈
ℤ
12
1
2
5
caucvgbf
⊢
M
∈
ℤ
∧
F
∈
V
→
F
∈
dom
⁡
⇝
↔
∀
x
∈
ℝ
+
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
x
13
11
4
12
syl2anc
⊢
φ
→
F
∈
dom
⁡
⇝
↔
∀
x
∈
ℝ
+
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
x
14
6
13
mpbid
⊢
φ
→
∀
x
∈
ℝ
+
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
x
15
10
14
7
rspcdva
⊢
φ
→
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
F
⁡
k
∈
ℂ
∧
F
⁡
k
−
F
⁡
j
<
X