Metamath Proof Explorer


Theorem cvgcau

Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses cvgcau.1 _ j F
cvgcau.2 _ k F
cvgcau.3 φ M Z
cvgcau.4 φ F V
cvgcau.5 Z = M
cvgcau.6 φ F dom
cvgcau.7 φ X +
Assertion cvgcau φ j Z k j F k F k F j < X

Proof

Step Hyp Ref Expression
1 cvgcau.1 _ j F
2 cvgcau.2 _ k F
3 cvgcau.3 φ M Z
4 cvgcau.4 φ F V
5 cvgcau.5 Z = M
6 cvgcau.6 φ F dom
7 cvgcau.7 φ X +
8 breq2 x = X F k F j < x F k F j < X
9 8 anbi2d x = X F k F k F j < x F k F k F j < X
10 9 rexralbidv x = X j Z k j F k F k F j < x j Z k j F k F k F j < X
11 5 3 eluzelz2d φ M
12 1 2 5 caucvgbf M F V F dom x + j Z k j F k F k F j < x
13 11 4 12 syl2anc φ F dom x + j Z k j F k F k F j < x
14 6 13 mpbid φ x + j Z k j F k F k F j < x
15 10 14 7 rspcdva φ j Z k j F k F k F j < X