Metamath Proof Explorer


Theorem cvgcaule

Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses cvgcaule.1 _ j F
cvgcaule.2 _ k F
cvgcaule.3 φ M Z
cvgcaule.4 φ F V
cvgcaule.5 Z = M
cvgcaule.6 φ F dom
cvgcaule.7 φ X +
Assertion cvgcaule φ j Z k j F k F k F j X

Proof

Step Hyp Ref Expression
1 cvgcaule.1 _ j F
2 cvgcaule.2 _ k F
3 cvgcaule.3 φ M Z
4 cvgcaule.4 φ F V
5 cvgcaule.5 Z = M
6 cvgcaule.6 φ F dom
7 cvgcaule.7 φ X +
8 1 2 3 4 5 6 7 cvgcau φ j Z k j F k F k F j < X
9 nfv k X + j Z
10 nfra1 k k j F k F k F j < X
11 9 10 nfan k X + j Z k j F k F k F j < X
12 rspa k j F k F k F j < X k j F k F k F j < X
13 12 simpld k j F k F k F j < X k j F k
14 13 adantll X + j Z k j F k F k F j < X k j F k
15 13 adantll j Z k j F k F k F j < X k j F k
16 5 uzid3 j Z j j
17 nfcv _ k j
18 2 17 nffv _ k F j
19 18 nfel1 k F j
20 nfcv _ k abs
21 nfcv _ k
22 18 21 18 nfov _ k F j F j
23 20 22 nffv _ k F j F j
24 nfcv _ k <
25 nfcv _ k X
26 23 24 25 nfbr k F j F j < X
27 19 26 nfan k F j F j F j < X
28 fveq2 k = j F k = F j
29 28 eleq1d k = j F k F j
30 28 fvoveq1d k = j F k F j = F j F j
31 30 breq1d k = j F k F j < X F j F j < X
32 29 31 anbi12d k = j F k F k F j < X F j F j F j < X
33 27 32 rspc j j k j F k F k F j < X F j F j F j < X
34 16 33 syl j Z k j F k F k F j < X F j F j F j < X
35 34 imp j Z k j F k F k F j < X F j F j F j < X
36 35 simpld j Z k j F k F k F j < X F j
37 36 adantr j Z k j F k F k F j < X k j F j
38 15 37 subcld j Z k j F k F k F j < X k j F k F j
39 38 abscld j Z k j F k F k F j < X k j F k F j
40 39 adantlll X + j Z k j F k F k F j < X k j F k F j
41 simplll X + j Z k j F k F k F j < X k j X +
42 41 rpred X + j Z k j F k F k F j < X k j X
43 12 adantll X + j Z k j F k F k F j < X k j F k F k F j < X
44 43 simprd X + j Z k j F k F k F j < X k j F k F j < X
45 40 42 44 ltled X + j Z k j F k F k F j < X k j F k F j X
46 14 45 jca X + j Z k j F k F k F j < X k j F k F k F j X
47 11 46 ralrimia X + j Z k j F k F k F j < X k j F k F k F j X
48 47 ex X + j Z k j F k F k F j < X k j F k F k F j X
49 48 reximdva X + j Z k j F k F k F j < X j Z k j F k F k F j X
50 7 8 49 sylc φ j Z k j F k F k F j X