Step |
Hyp |
Ref |
Expression |
1 |
|
cvgcmpce.1 |
|
2 |
|
cvgcmpce.2 |
|
3 |
|
cvgcmpce.3 |
|
4 |
|
cvgcmpce.4 |
|
5 |
|
cvgcmpce.5 |
|
6 |
|
cvgcmpce.6 |
|
7 |
|
cvgcmpce.7 |
|
8 |
2 1
|
eleqtrdi |
|
9 |
|
eluzel2 |
|
10 |
8 9
|
syl |
|
11 |
1 10 4
|
serf |
|
12 |
11
|
ffvelrnda |
|
13 |
|
fveq2 |
|
14 |
13
|
oveq2d |
|
15 |
|
eqid |
|
16 |
|
ovex |
|
17 |
14 15 16
|
fvmpt |
|
18 |
17
|
adantl |
|
19 |
6
|
adantr |
|
20 |
19 3
|
remulcld |
|
21 |
18 20
|
eqeltrd |
|
22 |
|
2fveq3 |
|
23 |
|
eqid |
|
24 |
|
fvex |
|
25 |
22 23 24
|
fvmpt |
|
26 |
25
|
adantl |
|
27 |
4
|
abscld |
|
28 |
26 27
|
eqeltrd |
|
29 |
6
|
recnd |
|
30 |
|
climdm |
|
31 |
5 30
|
sylib |
|
32 |
3
|
recnd |
|
33 |
1 10 29 31 32 18
|
isermulc2 |
|
34 |
|
climrel |
|
35 |
34
|
releldmi |
|
36 |
33 35
|
syl |
|
37 |
1
|
uztrn2 |
|
38 |
2 37
|
sylan |
|
39 |
4
|
absge0d |
|
40 |
39 26
|
breqtrrd |
|
41 |
38 40
|
syldan |
|
42 |
38 25
|
syl |
|
43 |
38 17
|
syl |
|
44 |
7 42 43
|
3brtr4d |
|
45 |
1 2 21 28 36 41 44
|
cvgcmp |
|
46 |
1
|
climcau |
|
47 |
10 45 46
|
syl2anc |
|
48 |
1 10 28
|
serfre |
|
49 |
48
|
ad2antrr |
|
50 |
1
|
uztrn2 |
|
51 |
50
|
adantl |
|
52 |
49 51
|
ffvelrnd |
|
53 |
|
simprl |
|
54 |
49 53
|
ffvelrnd |
|
55 |
52 54
|
resubcld |
|
56 |
|
0red |
|
57 |
11
|
ad2antrr |
|
58 |
57 51
|
ffvelrnd |
|
59 |
57 53
|
ffvelrnd |
|
60 |
58 59
|
subcld |
|
61 |
60
|
abscld |
|
62 |
60
|
absge0d |
|
63 |
|
fzfid |
|
64 |
|
difss |
|
65 |
|
ssfi |
|
66 |
63 64 65
|
sylancl |
|
67 |
|
eldifi |
|
68 |
|
simpll |
|
69 |
|
elfzuz |
|
70 |
69 1
|
eleqtrrdi |
|
71 |
68 70 4
|
syl2an |
|
72 |
67 71
|
sylan2 |
|
73 |
66 72
|
fsumabs |
|
74 |
|
eqidd |
|
75 |
51 1
|
eleqtrdi |
|
76 |
74 75 71
|
fsumser |
|
77 |
|
eqidd |
|
78 |
53 1
|
eleqtrdi |
|
79 |
|
elfzuz |
|
80 |
79 1
|
eleqtrrdi |
|
81 |
68 80 4
|
syl2an |
|
82 |
77 78 81
|
fsumser |
|
83 |
76 82
|
oveq12d |
|
84 |
|
fzfid |
|
85 |
84 81
|
fsumcl |
|
86 |
66 72
|
fsumcl |
|
87 |
|
disjdif |
|
88 |
87
|
a1i |
|
89 |
|
undif2 |
|
90 |
|
fzss2 |
|
91 |
90
|
ad2antll |
|
92 |
|
ssequn1 |
|
93 |
91 92
|
sylib |
|
94 |
89 93
|
eqtr2id |
|
95 |
88 94 63 71
|
fsumsplit |
|
96 |
85 86 95
|
mvrladdd |
|
97 |
83 96
|
eqtr3d |
|
98 |
97
|
fveq2d |
|
99 |
70
|
adantl |
|
100 |
99 25
|
syl |
|
101 |
|
abscl |
|
102 |
101
|
recnd |
|
103 |
71 102
|
syl |
|
104 |
100 75 103
|
fsumser |
|
105 |
80
|
adantl |
|
106 |
105 25
|
syl |
|
107 |
81 102
|
syl |
|
108 |
106 78 107
|
fsumser |
|
109 |
104 108
|
oveq12d |
|
110 |
84 107
|
fsumcl |
|
111 |
72 102
|
syl |
|
112 |
66 111
|
fsumcl |
|
113 |
88 94 63 103
|
fsumsplit |
|
114 |
110 112 113
|
mvrladdd |
|
115 |
109 114
|
eqtr3d |
|
116 |
73 98 115
|
3brtr4d |
|
117 |
56 61 55 62 116
|
letrd |
|
118 |
55 117
|
absidd |
|
119 |
118
|
breq1d |
|
120 |
|
rpre |
|
121 |
120
|
ad2antlr |
|
122 |
|
lelttr |
|
123 |
61 55 121 122
|
syl3anc |
|
124 |
116 123
|
mpand |
|
125 |
119 124
|
sylbid |
|
126 |
125
|
anassrs |
|
127 |
126
|
ralimdva |
|
128 |
127
|
reximdva |
|
129 |
128
|
ralimdva |
|
130 |
47 129
|
mpd |
|
131 |
|
seqex |
|
132 |
131
|
a1i |
|
133 |
1 12 130 132
|
caucvg |
|