| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvgcmpce.1 |
|
| 2 |
|
cvgcmpce.2 |
|
| 3 |
|
cvgcmpce.3 |
|
| 4 |
|
cvgcmpce.4 |
|
| 5 |
|
cvgcmpce.5 |
|
| 6 |
|
cvgcmpce.6 |
|
| 7 |
|
cvgcmpce.7 |
|
| 8 |
2 1
|
eleqtrdi |
|
| 9 |
|
eluzel2 |
|
| 10 |
8 9
|
syl |
|
| 11 |
1 10 4
|
serf |
|
| 12 |
11
|
ffvelcdmda |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
eqid |
|
| 16 |
|
ovex |
|
| 17 |
14 15 16
|
fvmpt |
|
| 18 |
17
|
adantl |
|
| 19 |
6
|
adantr |
|
| 20 |
19 3
|
remulcld |
|
| 21 |
18 20
|
eqeltrd |
|
| 22 |
|
2fveq3 |
|
| 23 |
|
eqid |
|
| 24 |
|
fvex |
|
| 25 |
22 23 24
|
fvmpt |
|
| 26 |
25
|
adantl |
|
| 27 |
4
|
abscld |
|
| 28 |
26 27
|
eqeltrd |
|
| 29 |
6
|
recnd |
|
| 30 |
|
climdm |
|
| 31 |
5 30
|
sylib |
|
| 32 |
3
|
recnd |
|
| 33 |
1 10 29 31 32 18
|
isermulc2 |
|
| 34 |
|
climrel |
|
| 35 |
34
|
releldmi |
|
| 36 |
33 35
|
syl |
|
| 37 |
1
|
uztrn2 |
|
| 38 |
2 37
|
sylan |
|
| 39 |
4
|
absge0d |
|
| 40 |
39 26
|
breqtrrd |
|
| 41 |
38 40
|
syldan |
|
| 42 |
38 25
|
syl |
|
| 43 |
38 17
|
syl |
|
| 44 |
7 42 43
|
3brtr4d |
|
| 45 |
1 2 21 28 36 41 44
|
cvgcmp |
|
| 46 |
1
|
climcau |
|
| 47 |
10 45 46
|
syl2anc |
|
| 48 |
1 10 28
|
serfre |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
1
|
uztrn2 |
|
| 51 |
50
|
adantl |
|
| 52 |
49 51
|
ffvelcdmd |
|
| 53 |
|
simprl |
|
| 54 |
49 53
|
ffvelcdmd |
|
| 55 |
52 54
|
resubcld |
|
| 56 |
|
0red |
|
| 57 |
11
|
ad2antrr |
|
| 58 |
57 51
|
ffvelcdmd |
|
| 59 |
57 53
|
ffvelcdmd |
|
| 60 |
58 59
|
subcld |
|
| 61 |
60
|
abscld |
|
| 62 |
60
|
absge0d |
|
| 63 |
|
fzfid |
|
| 64 |
|
difss |
|
| 65 |
|
ssfi |
|
| 66 |
63 64 65
|
sylancl |
|
| 67 |
|
eldifi |
|
| 68 |
|
simpll |
|
| 69 |
|
elfzuz |
|
| 70 |
69 1
|
eleqtrrdi |
|
| 71 |
68 70 4
|
syl2an |
|
| 72 |
67 71
|
sylan2 |
|
| 73 |
66 72
|
fsumabs |
|
| 74 |
|
eqidd |
|
| 75 |
51 1
|
eleqtrdi |
|
| 76 |
74 75 71
|
fsumser |
|
| 77 |
|
eqidd |
|
| 78 |
53 1
|
eleqtrdi |
|
| 79 |
|
elfzuz |
|
| 80 |
79 1
|
eleqtrrdi |
|
| 81 |
68 80 4
|
syl2an |
|
| 82 |
77 78 81
|
fsumser |
|
| 83 |
76 82
|
oveq12d |
|
| 84 |
|
fzfid |
|
| 85 |
84 81
|
fsumcl |
|
| 86 |
66 72
|
fsumcl |
|
| 87 |
|
disjdif |
|
| 88 |
87
|
a1i |
|
| 89 |
|
undif2 |
|
| 90 |
|
fzss2 |
|
| 91 |
90
|
ad2antll |
|
| 92 |
|
ssequn1 |
|
| 93 |
91 92
|
sylib |
|
| 94 |
89 93
|
eqtr2id |
|
| 95 |
88 94 63 71
|
fsumsplit |
|
| 96 |
85 86 95
|
mvrladdd |
|
| 97 |
83 96
|
eqtr3d |
|
| 98 |
97
|
fveq2d |
|
| 99 |
70
|
adantl |
|
| 100 |
99 25
|
syl |
|
| 101 |
|
abscl |
|
| 102 |
101
|
recnd |
|
| 103 |
71 102
|
syl |
|
| 104 |
100 75 103
|
fsumser |
|
| 105 |
80
|
adantl |
|
| 106 |
105 25
|
syl |
|
| 107 |
81 102
|
syl |
|
| 108 |
106 78 107
|
fsumser |
|
| 109 |
104 108
|
oveq12d |
|
| 110 |
84 107
|
fsumcl |
|
| 111 |
72 102
|
syl |
|
| 112 |
66 111
|
fsumcl |
|
| 113 |
88 94 63 103
|
fsumsplit |
|
| 114 |
110 112 113
|
mvrladdd |
|
| 115 |
109 114
|
eqtr3d |
|
| 116 |
73 98 115
|
3brtr4d |
|
| 117 |
56 61 55 62 116
|
letrd |
|
| 118 |
55 117
|
absidd |
|
| 119 |
118
|
breq1d |
|
| 120 |
|
rpre |
|
| 121 |
120
|
ad2antlr |
|
| 122 |
|
lelttr |
|
| 123 |
61 55 121 122
|
syl3anc |
|
| 124 |
116 123
|
mpand |
|
| 125 |
119 124
|
sylbid |
|
| 126 |
125
|
anassrs |
|
| 127 |
126
|
ralimdva |
|
| 128 |
127
|
reximdva |
|
| 129 |
128
|
ralimdva |
|
| 130 |
47 129
|
mpd |
|
| 131 |
|
seqex |
|
| 132 |
131
|
a1i |
|
| 133 |
1 12 130 132
|
caucvg |
|