Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
cvlatcvr2
Next ⟩
cvlsupr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cvlatcvr2
Description:
An atom is covered by its join with a different atom.
(Contributed by
NM
, 5-Nov-2012)
Ref
Expression
Hypotheses
cvlatcvr1.j
⊢
∨
˙
=
join
⁡
K
cvlatcvr1.c
⊢
C
=
⋖
K
cvlatcvr1.a
⊢
A
=
Atoms
⁡
K
Assertion
cvlatcvr2
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
P
≠
Q
↔
P
C
Q
∨
˙
P
Proof
Step
Hyp
Ref
Expression
1
cvlatcvr1.j
⊢
∨
˙
=
join
⁡
K
2
cvlatcvr1.c
⊢
C
=
⋖
K
3
cvlatcvr1.a
⊢
A
=
Atoms
⁡
K
4
1
2
3
cvlatcvr1
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
P
≠
Q
↔
P
C
P
∨
˙
Q
5
simp13
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
K
∈
CvLat
6
cvllat
⊢
K
∈
CvLat
→
K
∈
Lat
7
5
6
syl
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
K
∈
Lat
8
eqid
⊢
Base
K
=
Base
K
9
8
3
atbase
⊢
P
∈
A
→
P
∈
Base
K
10
9
3ad2ant2
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
P
∈
Base
K
11
8
3
atbase
⊢
Q
∈
A
→
Q
∈
Base
K
12
11
3ad2ant3
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
Q
∈
Base
K
13
8
1
latjcom
⊢
K
∈
Lat
∧
P
∈
Base
K
∧
Q
∈
Base
K
→
P
∨
˙
Q
=
Q
∨
˙
P
14
7
10
12
13
syl3anc
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
P
∨
˙
Q
=
Q
∨
˙
P
15
14
breq2d
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
P
C
P
∨
˙
Q
↔
P
C
Q
∨
˙
P
16
4
15
bitrd
⊢
K
∈
OML
∧
K
∈
CLat
∧
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
→
P
≠
Q
↔
P
C
Q
∨
˙
P