Metamath Proof Explorer


Theorem cvlatcvr2

Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatcvr1.j ˙ = join K
cvlatcvr1.c C = K
cvlatcvr1.a A = Atoms K
Assertion cvlatcvr2 K OML K CLat K CvLat P A Q A P Q P C Q ˙ P

Proof

Step Hyp Ref Expression
1 cvlatcvr1.j ˙ = join K
2 cvlatcvr1.c C = K
3 cvlatcvr1.a A = Atoms K
4 1 2 3 cvlatcvr1 K OML K CLat K CvLat P A Q A P Q P C P ˙ Q
5 simp13 K OML K CLat K CvLat P A Q A K CvLat
6 cvllat K CvLat K Lat
7 5 6 syl K OML K CLat K CvLat P A Q A K Lat
8 eqid Base K = Base K
9 8 3 atbase P A P Base K
10 9 3ad2ant2 K OML K CLat K CvLat P A Q A P Base K
11 8 3 atbase Q A Q Base K
12 11 3ad2ant3 K OML K CLat K CvLat P A Q A Q Base K
13 8 1 latjcom K Lat P Base K Q Base K P ˙ Q = Q ˙ P
14 7 10 12 13 syl3anc K OML K CLat K CvLat P A Q A P ˙ Q = Q ˙ P
15 14 breq2d K OML K CLat K CvLat P A Q A P C P ˙ Q P C Q ˙ P
16 4 15 bitrd K OML K CLat K CvLat P A Q A P Q P C Q ˙ P