Metamath Proof Explorer


Theorem cvlatexch1

Description: Atom exchange property. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l ˙ = K
cvlatexch.j ˙ = join K
cvlatexch.a A = Atoms K
Assertion cvlatexch1 K CvLat P A Q A R A P R P ˙ R ˙ Q Q ˙ R ˙ P

Proof

Step Hyp Ref Expression
1 cvlatexch.l ˙ = K
2 cvlatexch.j ˙ = join K
3 cvlatexch.a A = Atoms K
4 1 2 3 cvlatexchb1 K CvLat P A Q A R A P R P ˙ R ˙ Q R ˙ P = R ˙ Q
5 cvllat K CvLat K Lat
6 5 3ad2ant1 K CvLat P A Q A R A P R K Lat
7 simp23 K CvLat P A Q A R A P R R A
8 eqid Base K = Base K
9 8 3 atbase R A R Base K
10 7 9 syl K CvLat P A Q A R A P R R Base K
11 simp22 K CvLat P A Q A R A P R Q A
12 8 3 atbase Q A Q Base K
13 11 12 syl K CvLat P A Q A R A P R Q Base K
14 8 1 2 latlej2 K Lat R Base K Q Base K Q ˙ R ˙ Q
15 6 10 13 14 syl3anc K CvLat P A Q A R A P R Q ˙ R ˙ Q
16 breq2 R ˙ P = R ˙ Q Q ˙ R ˙ P Q ˙ R ˙ Q
17 15 16 syl5ibrcom K CvLat P A Q A R A P R R ˙ P = R ˙ Q Q ˙ R ˙ P
18 4 17 sylbid K CvLat P A Q A R A P R P ˙ R ˙ Q Q ˙ R ˙ P