Metamath Proof Explorer


Theorem cvlatexch3

Description: Atom exchange property. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l ˙ = K
cvlatexch.j ˙ = join K
cvlatexch.a A = Atoms K
Assertion cvlatexch3 K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P ˙ Q = P ˙ R

Proof

Step Hyp Ref Expression
1 cvlatexch.l ˙ = K
2 cvlatexch.j ˙ = join K
3 cvlatexch.a A = Atoms K
4 simp1 K CvLat P A Q A R A P Q P R K CvLat
5 simp21 K CvLat P A Q A R A P Q P R P A
6 simp23 K CvLat P A Q A R A P Q P R R A
7 simp22 K CvLat P A Q A R A P Q P R Q A
8 simp3l K CvLat P A Q A R A P Q P R P Q
9 1 2 3 cvlatexchb1 K CvLat P A R A Q A P Q P ˙ Q ˙ R Q ˙ P = Q ˙ R
10 4 5 6 7 8 9 syl131anc K CvLat P A Q A R A P Q P R P ˙ Q ˙ R Q ˙ P = Q ˙ R
11 10 biimpa K CvLat P A Q A R A P Q P R P ˙ Q ˙ R Q ˙ P = Q ˙ R
12 simpl1 K CvLat P A Q A R A P Q P R P ˙ Q ˙ R K CvLat
13 cvllat K CvLat K Lat
14 12 13 syl K CvLat P A Q A R A P Q P R P ˙ Q ˙ R K Lat
15 simpl21 K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P A
16 eqid Base K = Base K
17 16 3 atbase P A P Base K
18 15 17 syl K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P Base K
19 simpl22 K CvLat P A Q A R A P Q P R P ˙ Q ˙ R Q A
20 16 3 atbase Q A Q Base K
21 19 20 syl K CvLat P A Q A R A P Q P R P ˙ Q ˙ R Q Base K
22 16 2 latjcom K Lat P Base K Q Base K P ˙ Q = Q ˙ P
23 14 18 21 22 syl3anc K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P ˙ Q = Q ˙ P
24 1 2 3 cvlatexchb2 K CvLat P A Q A R A P R P ˙ Q ˙ R P ˙ R = Q ˙ R
25 24 3adant3l K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P ˙ R = Q ˙ R
26 25 biimpa K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P ˙ R = Q ˙ R
27 11 23 26 3eqtr4d K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P ˙ Q = P ˙ R
28 27 ex K CvLat P A Q A R A P Q P R P ˙ Q ˙ R P ˙ Q = P ˙ R