Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
cvlatexchb1
Next ⟩
cvlatexchb2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cvlatexchb1
Description:
A version of
cvlexchb1
for atoms.
(Contributed by
NM
, 5-Nov-2012)
Ref
Expression
Hypotheses
cvlatexch.l
⊢
≤
˙
=
≤
K
cvlatexch.j
⊢
∨
˙
=
join
⁡
K
cvlatexch.a
⊢
A
=
Atoms
⁡
K
Assertion
cvlatexchb1
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
R
→
P
≤
˙
R
∨
˙
Q
↔
R
∨
˙
P
=
R
∨
˙
Q
Proof
Step
Hyp
Ref
Expression
1
cvlatexch.l
⊢
≤
˙
=
≤
K
2
cvlatexch.j
⊢
∨
˙
=
join
⁡
K
3
cvlatexch.a
⊢
A
=
Atoms
⁡
K
4
cvlatl
⊢
K
∈
CvLat
→
K
∈
AtLat
5
4
adantr
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
→
K
∈
AtLat
6
simpr1
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
→
P
∈
A
7
simpr3
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
→
R
∈
A
8
1
3
atncmp
⊢
K
∈
AtLat
∧
P
∈
A
∧
R
∈
A
→
¬
P
≤
˙
R
↔
P
≠
R
9
5
6
7
8
syl3anc
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
→
¬
P
≤
˙
R
↔
P
≠
R
10
eqid
⊢
Base
K
=
Base
K
11
10
3
atbase
⊢
R
∈
A
→
R
∈
Base
K
12
10
1
2
3
cvlexchb1
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
Base
K
∧
¬
P
≤
˙
R
→
P
≤
˙
R
∨
˙
Q
↔
R
∨
˙
P
=
R
∨
˙
Q
13
12
3expia
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
Base
K
→
¬
P
≤
˙
R
→
P
≤
˙
R
∨
˙
Q
↔
R
∨
˙
P
=
R
∨
˙
Q
14
11
13
syl3anr3
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
→
¬
P
≤
˙
R
→
P
≤
˙
R
∨
˙
Q
↔
R
∨
˙
P
=
R
∨
˙
Q
15
9
14
sylbird
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
→
P
≠
R
→
P
≤
˙
R
∨
˙
Q
↔
R
∨
˙
P
=
R
∨
˙
Q
16
15
3impia
⊢
K
∈
CvLat
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
R
→
P
≤
˙
R
∨
˙
Q
↔
R
∨
˙
P
=
R
∨
˙
Q