Metamath Proof Explorer


Theorem cvlatexchb1

Description: A version of cvlexchb1 for atoms. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l ˙ = K
cvlatexch.j ˙ = join K
cvlatexch.a A = Atoms K
Assertion cvlatexchb1 K CvLat P A Q A R A P R P ˙ R ˙ Q R ˙ P = R ˙ Q

Proof

Step Hyp Ref Expression
1 cvlatexch.l ˙ = K
2 cvlatexch.j ˙ = join K
3 cvlatexch.a A = Atoms K
4 cvlatl K CvLat K AtLat
5 4 adantr K CvLat P A Q A R A K AtLat
6 simpr1 K CvLat P A Q A R A P A
7 simpr3 K CvLat P A Q A R A R A
8 1 3 atncmp K AtLat P A R A ¬ P ˙ R P R
9 5 6 7 8 syl3anc K CvLat P A Q A R A ¬ P ˙ R P R
10 eqid Base K = Base K
11 10 3 atbase R A R Base K
12 10 1 2 3 cvlexchb1 K CvLat P A Q A R Base K ¬ P ˙ R P ˙ R ˙ Q R ˙ P = R ˙ Q
13 12 3expia K CvLat P A Q A R Base K ¬ P ˙ R P ˙ R ˙ Q R ˙ P = R ˙ Q
14 11 13 syl3anr3 K CvLat P A Q A R A ¬ P ˙ R P ˙ R ˙ Q R ˙ P = R ˙ Q
15 9 14 sylbird K CvLat P A Q A R A P R P ˙ R ˙ Q R ˙ P = R ˙ Q
16 15 3impia K CvLat P A Q A R A P R P ˙ R ˙ Q R ˙ P = R ˙ Q