Metamath Proof Explorer


Theorem cvlatl

Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion cvlatl K CvLat K AtLat

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid K = K
3 eqid join K = join K
4 eqid Atoms K = Atoms K
5 1 2 3 4 iscvlat K CvLat K AtLat p Atoms K q Atoms K x Base K ¬ p K x p K x join K q q K x join K p
6 5 simplbi K CvLat K AtLat