Metamath Proof Explorer


Theorem cvlcvrp

Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlcvrp.b B=BaseK
cvlcvrp.j ˙=joinK
cvlcvrp.m ˙=meetK
cvlcvrp.z 0˙=0.K
cvlcvrp.c C=K
cvlcvrp.a A=AtomsK
Assertion cvlcvrp KOMLKCLatKCvLatXBPAX˙P=0˙XCX˙P

Proof

Step Hyp Ref Expression
1 cvlcvrp.b B=BaseK
2 cvlcvrp.j ˙=joinK
3 cvlcvrp.m ˙=meetK
4 cvlcvrp.z 0˙=0.K
5 cvlcvrp.c C=K
6 cvlcvrp.a A=AtomsK
7 simp13 KOMLKCLatKCvLatXBPAKCvLat
8 cvllat KCvLatKLat
9 7 8 syl KOMLKCLatKCvLatXBPAKLat
10 simp2 KOMLKCLatKCvLatXBPAXB
11 1 6 atbase PAPB
12 11 3ad2ant3 KOMLKCLatKCvLatXBPAPB
13 1 3 latmcom KLatXBPBX˙P=P˙X
14 9 10 12 13 syl3anc KOMLKCLatKCvLatXBPAX˙P=P˙X
15 14 eqeq1d KOMLKCLatKCvLatXBPAX˙P=0˙P˙X=0˙
16 cvlatl KCvLatKAtLat
17 7 16 syl KOMLKCLatKCvLatXBPAKAtLat
18 simp3 KOMLKCLatKCvLatXBPAPA
19 eqid K=K
20 1 19 3 4 6 atnle KAtLatPAXB¬PKXP˙X=0˙
21 17 18 10 20 syl3anc KOMLKCLatKCvLatXBPA¬PKXP˙X=0˙
22 1 19 2 5 6 cvlcvr1 KOMLKCLatKCvLatXBPA¬PKXXCX˙P
23 15 21 22 3bitr2d KOMLKCLatKCvLatXBPAX˙P=0˙XCX˙P