Metamath Proof Explorer


Theorem cvlcvrp

Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlcvrp.b B = Base K
cvlcvrp.j ˙ = join K
cvlcvrp.m ˙ = meet K
cvlcvrp.z 0 ˙ = 0. K
cvlcvrp.c C = K
cvlcvrp.a A = Atoms K
Assertion cvlcvrp K OML K CLat K CvLat X B P A X ˙ P = 0 ˙ X C X ˙ P

Proof

Step Hyp Ref Expression
1 cvlcvrp.b B = Base K
2 cvlcvrp.j ˙ = join K
3 cvlcvrp.m ˙ = meet K
4 cvlcvrp.z 0 ˙ = 0. K
5 cvlcvrp.c C = K
6 cvlcvrp.a A = Atoms K
7 simp13 K OML K CLat K CvLat X B P A K CvLat
8 cvllat K CvLat K Lat
9 7 8 syl K OML K CLat K CvLat X B P A K Lat
10 simp2 K OML K CLat K CvLat X B P A X B
11 1 6 atbase P A P B
12 11 3ad2ant3 K OML K CLat K CvLat X B P A P B
13 1 3 latmcom K Lat X B P B X ˙ P = P ˙ X
14 9 10 12 13 syl3anc K OML K CLat K CvLat X B P A X ˙ P = P ˙ X
15 14 eqeq1d K OML K CLat K CvLat X B P A X ˙ P = 0 ˙ P ˙ X = 0 ˙
16 cvlatl K CvLat K AtLat
17 7 16 syl K OML K CLat K CvLat X B P A K AtLat
18 simp3 K OML K CLat K CvLat X B P A P A
19 eqid K = K
20 1 19 3 4 6 atnle K AtLat P A X B ¬ P K X P ˙ X = 0 ˙
21 17 18 10 20 syl3anc K OML K CLat K CvLat X B P A ¬ P K X P ˙ X = 0 ˙
22 1 19 2 5 6 cvlcvr1 K OML K CLat K CvLat X B P A ¬ P K X X C X ˙ P
23 15 21 22 3bitr2d K OML K CLat K CvLat X B P A X ˙ P = 0 ˙ X C X ˙ P