Metamath Proof Explorer


Theorem cvlexch1

Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011)

Ref Expression
Hypotheses cvlexch.b B = Base K
cvlexch.l ˙ = K
cvlexch.j ˙ = join K
cvlexch.a A = Atoms K
Assertion cvlexch1 K CvLat P A Q A X B ¬ P ˙ X P ˙ X ˙ Q Q ˙ X ˙ P

Proof

Step Hyp Ref Expression
1 cvlexch.b B = Base K
2 cvlexch.l ˙ = K
3 cvlexch.j ˙ = join K
4 cvlexch.a A = Atoms K
5 1 2 3 4 iscvlat K CvLat K AtLat p A q A x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p
6 5 simprbi K CvLat p A q A x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p
7 breq1 p = P p ˙ x P ˙ x
8 7 notbid p = P ¬ p ˙ x ¬ P ˙ x
9 breq1 p = P p ˙ x ˙ q P ˙ x ˙ q
10 8 9 anbi12d p = P ¬ p ˙ x p ˙ x ˙ q ¬ P ˙ x P ˙ x ˙ q
11 oveq2 p = P x ˙ p = x ˙ P
12 11 breq2d p = P q ˙ x ˙ p q ˙ x ˙ P
13 10 12 imbi12d p = P ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p ¬ P ˙ x P ˙ x ˙ q q ˙ x ˙ P
14 oveq2 q = Q x ˙ q = x ˙ Q
15 14 breq2d q = Q P ˙ x ˙ q P ˙ x ˙ Q
16 15 anbi2d q = Q ¬ P ˙ x P ˙ x ˙ q ¬ P ˙ x P ˙ x ˙ Q
17 breq1 q = Q q ˙ x ˙ P Q ˙ x ˙ P
18 16 17 imbi12d q = Q ¬ P ˙ x P ˙ x ˙ q q ˙ x ˙ P ¬ P ˙ x P ˙ x ˙ Q Q ˙ x ˙ P
19 breq2 x = X P ˙ x P ˙ X
20 19 notbid x = X ¬ P ˙ x ¬ P ˙ X
21 oveq1 x = X x ˙ Q = X ˙ Q
22 21 breq2d x = X P ˙ x ˙ Q P ˙ X ˙ Q
23 20 22 anbi12d x = X ¬ P ˙ x P ˙ x ˙ Q ¬ P ˙ X P ˙ X ˙ Q
24 oveq1 x = X x ˙ P = X ˙ P
25 24 breq2d x = X Q ˙ x ˙ P Q ˙ X ˙ P
26 23 25 imbi12d x = X ¬ P ˙ x P ˙ x ˙ Q Q ˙ x ˙ P ¬ P ˙ X P ˙ X ˙ Q Q ˙ X ˙ P
27 13 18 26 rspc3v P A Q A X B p A q A x B ¬ p ˙ x p ˙ x ˙ q q ˙ x ˙ p ¬ P ˙ X P ˙ X ˙ Q Q ˙ X ˙ P
28 6 27 mpan9 K CvLat P A Q A X B ¬ P ˙ X P ˙ X ˙ Q Q ˙ X ˙ P
29 28 exp4b K CvLat P A Q A X B ¬ P ˙ X P ˙ X ˙ Q Q ˙ X ˙ P
30 29 3imp K CvLat P A Q A X B ¬ P ˙ X P ˙ X ˙ Q Q ˙ X ˙ P