Metamath Proof Explorer


Theorem cvlsupr2

Description: Two equivalent ways of expressing that R is a superposition of P and Q . (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlsupr2.a A = Atoms K
cvlsupr2.l ˙ = K
cvlsupr2.j ˙ = join K
Assertion cvlsupr2 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cvlsupr2.a A = Atoms K
2 cvlsupr2.l ˙ = K
3 cvlsupr2.j ˙ = join K
4 simpl3 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P Q
5 4 necomd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q P
6 simplr K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = P P ˙ R = Q ˙ R
7 oveq2 R = P P ˙ R = P ˙ P
8 oveq2 R = P Q ˙ R = Q ˙ P
9 7 8 eqeq12d R = P P ˙ R = Q ˙ R P ˙ P = Q ˙ P
10 eqcom P ˙ P = Q ˙ P Q ˙ P = P ˙ P
11 9 10 bitrdi R = P P ˙ R = Q ˙ R Q ˙ P = P ˙ P
12 11 adantl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = P P ˙ R = Q ˙ R Q ˙ P = P ˙ P
13 6 12 mpbid K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = P Q ˙ P = P ˙ P
14 simpl1 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R K CvLat
15 cvllat K CvLat K Lat
16 14 15 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R K Lat
17 simpl21 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P A
18 eqid Base K = Base K
19 18 1 atbase P A P Base K
20 17 19 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P Base K
21 18 3 latjidm K Lat P Base K P ˙ P = P
22 16 20 21 syl2anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ P = P
23 22 adantr K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = P P ˙ P = P
24 13 23 eqtrd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = P Q ˙ P = P
25 24 ex K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = P Q ˙ P = P
26 simpl22 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q A
27 18 1 atbase Q A Q Base K
28 26 27 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q Base K
29 18 2 3 latleeqj1 K Lat Q Base K P Base K Q ˙ P Q ˙ P = P
30 16 28 20 29 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ P Q ˙ P = P
31 cvlatl K CvLat K AtLat
32 14 31 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R K AtLat
33 2 1 atcmp K AtLat Q A P A Q ˙ P Q = P
34 32 26 17 33 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ P Q = P
35 30 34 bitr3d K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ P = P Q = P
36 25 35 sylibd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = P Q = P
37 36 necon3d K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q P R P
38 5 37 mpd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P
39 simplr K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = Q P ˙ R = Q ˙ R
40 oveq2 R = Q P ˙ R = P ˙ Q
41 oveq2 R = Q Q ˙ R = Q ˙ Q
42 40 41 eqeq12d R = Q P ˙ R = Q ˙ R P ˙ Q = Q ˙ Q
43 42 adantl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = Q P ˙ R = Q ˙ R P ˙ Q = Q ˙ Q
44 39 43 mpbid K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = Q P ˙ Q = Q ˙ Q
45 18 3 latjidm K Lat Q Base K Q ˙ Q = Q
46 16 28 45 syl2anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ Q = Q
47 46 adantr K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = Q Q ˙ Q = Q
48 44 47 eqtrd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = Q P ˙ Q = Q
49 48 ex K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = Q P ˙ Q = Q
50 18 2 3 latleeqj1 K Lat P Base K Q Base K P ˙ Q P ˙ Q = Q
51 16 20 28 50 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q P ˙ Q = Q
52 2 1 atcmp K AtLat P A Q A P ˙ Q P = Q
53 32 17 26 52 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q P = Q
54 51 53 bitr3d K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = Q P = Q
55 49 54 sylibd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R = Q P = Q
56 55 necon3d K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P Q R Q
57 4 56 mpd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R Q
58 simpl23 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R A
59 18 1 atbase R A R Base K
60 58 59 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R Base K
61 18 2 3 latlej1 K Lat Q Base K R Base K Q ˙ Q ˙ R
62 16 28 60 61 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ Q ˙ R
63 simpr K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ R = Q ˙ R
64 62 63 breqtrrd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ P ˙ R
65 2 3 1 cvlatexch1 K CvLat Q A R A P A Q P Q ˙ P ˙ R R ˙ P ˙ Q
66 14 26 58 17 5 65 syl131anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ P ˙ R R ˙ P ˙ Q
67 64 66 mpd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R ˙ P ˙ Q
68 38 57 67 3jca K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q
69 simpr3 K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R ˙ P ˙ Q
70 simpl1 K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q K CvLat
71 70 15 syl K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q K Lat
72 simpl21 K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q P A
73 72 19 syl K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q P Base K
74 simpl22 K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q Q A
75 74 27 syl K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q Q Base K
76 18 3 latjcom K Lat P Base K Q Base K P ˙ Q = Q ˙ P
77 71 73 75 76 syl3anc K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q P ˙ Q = Q ˙ P
78 77 breq2d K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R ˙ P ˙ Q R ˙ Q ˙ P
79 simpl23 K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R A
80 simpr2 K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R Q
81 2 3 1 cvlatexch1 K CvLat R A P A Q A R Q R ˙ Q ˙ P P ˙ Q ˙ R
82 70 79 72 74 80 81 syl131anc K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R ˙ Q ˙ P P ˙ Q ˙ R
83 simpr1 K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R P
84 83 necomd K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q P R
85 2 3 1 cvlatexchb2 K CvLat P A Q A R A P R P ˙ Q ˙ R P ˙ R = Q ˙ R
86 70 72 74 79 84 85 syl131anc K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q P ˙ Q ˙ R P ˙ R = Q ˙ R
87 82 86 sylibd K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R ˙ Q ˙ P P ˙ R = Q ˙ R
88 78 87 sylbid K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q R ˙ P ˙ Q P ˙ R = Q ˙ R
89 69 88 mpd K CvLat P A Q A R A P Q R P R Q R ˙ P ˙ Q P ˙ R = Q ˙ R
90 68 89 impbida K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q