Metamath Proof Explorer


Theorem cvlsupr4

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses cvlsupr2.a A = Atoms K
cvlsupr2.l ˙ = K
cvlsupr2.j ˙ = join K
Assertion cvlsupr4 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cvlsupr2.a A = Atoms K
2 cvlsupr2.l ˙ = K
3 cvlsupr2.j ˙ = join K
4 1 2 3 cvlsupr2 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q
5 simp3 R P R Q R ˙ P ˙ Q R ˙ P ˙ Q
6 4 5 syl6bi K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R ˙ P ˙ Q
7 6 3exp K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R ˙ P ˙ Q
8 7 imp4a K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R ˙ P ˙ Q
9 8 3imp K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R ˙ P ˙ Q