Metamath Proof Explorer


Theorem cvlsupr7

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a A = Atoms K
cvlsupr5.j ˙ = join K
Assertion cvlsupr7 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = R ˙ Q

Proof

Step Hyp Ref Expression
1 cvlsupr5.a A = Atoms K
2 cvlsupr5.j ˙ = join K
3 cvllat K CvLat K Lat
4 3 3ad2ant1 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R K Lat
5 simp21 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P A
6 eqid Base K = Base K
7 6 1 atbase P A P Base K
8 5 7 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P Base K
9 simp23 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R A
10 6 1 atbase R A R Base K
11 9 10 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R Base K
12 eqid K = K
13 6 12 2 latlej1 K Lat P Base K R Base K P K P ˙ R
14 4 8 11 13 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P K P ˙ R
15 simp3r K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ R = Q ˙ R
16 14 15 breqtrd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P K Q ˙ R
17 simp22 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q A
18 6 1 atbase Q A Q Base K
19 17 18 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q Base K
20 6 2 latjcom K Lat Q Base K R Base K Q ˙ R = R ˙ Q
21 4 19 11 20 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ R = R ˙ Q
22 16 21 breqtrd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P K R ˙ Q
23 simp1 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R K CvLat
24 simp3l K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P Q
25 12 2 1 cvlatexchb2 K CvLat P A R A Q A P Q P K R ˙ Q P ˙ Q = R ˙ Q
26 23 5 9 17 24 25 syl131anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P K R ˙ Q P ˙ Q = R ˙ Q
27 22 26 mpbid K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = R ˙ Q