Metamath Proof Explorer


Theorem cvlsupr8

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a A = Atoms K
cvlsupr5.j ˙ = join K
Assertion cvlsupr8 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = P ˙ R

Proof

Step Hyp Ref Expression
1 cvlsupr5.a A = Atoms K
2 cvlsupr5.j ˙ = join K
3 cvllat K CvLat K Lat
4 3 3ad2ant1 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R K Lat
5 simp22 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q A
6 eqid Base K = Base K
7 6 1 atbase Q A Q Base K
8 5 7 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q Base K
9 simp23 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R A
10 6 1 atbase R A R Base K
11 9 10 syl K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R Base K
12 6 2 latjcom K Lat Q Base K R Base K Q ˙ R = R ˙ Q
13 4 8 11 12 syl3anc K CvLat P A Q A R A P Q P ˙ R = Q ˙ R Q ˙ R = R ˙ Q
14 simp3r K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ R = Q ˙ R
15 1 2 cvlsupr7 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = R ˙ Q
16 13 14 15 3eqtr4rd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = P ˙ R