Metamath Proof Explorer


Theorem cvmd

Description: The covering property implies the modular pair property. Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvmd A C B C A B B A 𝑀 B

Proof

Step Hyp Ref Expression
1 ineq1 A = if A C A A B = if A C A B
2 1 breq1d A = if A C A A B B if A C A B B
3 breq1 A = if A C A A 𝑀 B if A C A 𝑀 B
4 2 3 imbi12d A = if A C A A B B A 𝑀 B if A C A B B if A C A 𝑀 B
5 ineq2 B = if B C B if A C A B = if A C A if B C B
6 id B = if B C B B = if B C B
7 5 6 breq12d B = if B C B if A C A B B if A C A if B C B if B C B
8 breq2 B = if B C B if A C A 𝑀 B if A C A 𝑀 if B C B
9 7 8 imbi12d B = if B C B if A C A B B if A C A 𝑀 B if A C A if B C B if B C B if A C A 𝑀 if B C B
10 ifchhv if A C A C
11 ifchhv if B C B C
12 10 11 cvmdi if A C A if B C B if B C B if A C A 𝑀 if B C B
13 4 9 12 dedth2h A C B C A B B A 𝑀 B
14 13 3impia A C B C A B B A 𝑀 B