Metamath Proof Explorer


Theorem cvnbtwn

Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn A C B C C C A B ¬ A C C B

Proof

Step Hyp Ref Expression
1 cvbr A C B C A B A B ¬ x C A x x B
2 psseq2 x = C A x A C
3 psseq1 x = C x B C B
4 2 3 anbi12d x = C A x x B A C C B
5 4 rspcev C C A C C B x C A x x B
6 5 ex C C A C C B x C A x x B
7 6 con3rr3 ¬ x C A x x B C C ¬ A C C B
8 7 adantl A B ¬ x C A x x B C C ¬ A C C B
9 1 8 syl6bi A C B C A B C C ¬ A C C B
10 9 com23 A C B C C C A B ¬ A C C B
11 10 3impia A C B C C C A B ¬ A C C B