Metamath Proof Explorer


Theorem cvnbtwn3

Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn3 A C B C C C A B A C C B C = A

Proof

Step Hyp Ref Expression
1 cvnbtwn A C B C C C A B ¬ A C C B
2 iman A C C B A = C ¬ A C C B ¬ A = C
3 eqcom C = A A = C
4 3 imbi2i A C C B C = A A C C B A = C
5 dfpss2 A C A C ¬ A = C
6 5 anbi1i A C C B A C ¬ A = C C B
7 an32 A C ¬ A = C C B A C C B ¬ A = C
8 6 7 bitri A C C B A C C B ¬ A = C
9 8 notbii ¬ A C C B ¬ A C C B ¬ A = C
10 2 4 9 3bitr4ri ¬ A C C B A C C B C = A
11 1 10 syl6ib A C B C C C A B A C C B C = A