Metamath Proof Explorer


Theorem cvnbtwn4

Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn4 A C B C C C A B A C C B C = A C = B

Proof

Step Hyp Ref Expression
1 cvnbtwn A C B C C C A B ¬ A C C B
2 iman A C C B C = A C = B ¬ A C C B ¬ C = A C = B
3 an4 A C C B ¬ A = C ¬ C = B A C ¬ A = C C B ¬ C = B
4 ioran ¬ C = A C = B ¬ C = A ¬ C = B
5 eqcom C = A A = C
6 5 notbii ¬ C = A ¬ A = C
7 6 anbi1i ¬ C = A ¬ C = B ¬ A = C ¬ C = B
8 4 7 bitri ¬ C = A C = B ¬ A = C ¬ C = B
9 8 anbi2i A C C B ¬ C = A C = B A C C B ¬ A = C ¬ C = B
10 dfpss2 A C A C ¬ A = C
11 dfpss2 C B C B ¬ C = B
12 10 11 anbi12i A C C B A C ¬ A = C C B ¬ C = B
13 3 9 12 3bitr4i A C C B ¬ C = A C = B A C C B
14 13 notbii ¬ A C C B ¬ C = A C = B ¬ A C C B
15 2 14 bitr2i ¬ A C C B A C C B C = A C = B
16 1 15 syl6ib A C B C C C A B A C C B C = A C = B