Metamath Proof Explorer


Theorem cvntr

Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvntr A C B C C C A B B C ¬ A C

Proof

Step Hyp Ref Expression
1 cvpss A C B C A B A B
2 1 3adant3 A C B C C C A B A B
3 cvpss B C C C B C B C
4 3 3adant1 A C B C C C B C B C
5 cvnbtwn A C C C B C A C ¬ A B B C
6 5 3com23 A C B C C C A C ¬ A B B C
7 6 con2d A C B C C C A B B C ¬ A C
8 2 4 7 syl2and A C B C C C A B B C ¬ A C