Metamath Proof Explorer


Theorem cvp

Description: The Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvp A C B HAtoms A B = 0 A A B

Proof

Step Hyp Ref Expression
1 atelch B HAtoms B C
2 chincl A C B C A B C
3 1 2 sylan2 A C B HAtoms A B C
4 atcveq0 A B C B HAtoms A B B A B = 0
5 3 4 sylancom A C B HAtoms A B B A B = 0
6 cvexch A C B C A B B A A B
7 1 6 sylan2 A C B HAtoms A B B A A B
8 5 7 bitr3d A C B HAtoms A B = 0 A A B