Metamath Proof Explorer


Theorem cvr1

Description: A Hilbert lattice has the covering property. Proposition 1(ii) in Kalmbach p. 140 (and its converse). ( chcv1 analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses cvr1.b B = Base K
cvr1.l ˙ = K
cvr1.j ˙ = join K
cvr1.c C = K
cvr1.a A = Atoms K
Assertion cvr1 K HL X B P A ¬ P ˙ X X C X ˙ P

Proof

Step Hyp Ref Expression
1 cvr1.b B = Base K
2 cvr1.l ˙ = K
3 cvr1.j ˙ = join K
4 cvr1.c C = K
5 cvr1.a A = Atoms K
6 hlomcmcv K HL K OML K CLat K CvLat
7 1 2 3 4 5 cvlcvr1 K OML K CLat K CvLat X B P A ¬ P ˙ X X C X ˙ P
8 6 7 syl3an1 K HL X B P A ¬ P ˙ X X C X ˙ P