Metamath Proof Explorer


Theorem cvr2N

Description: Less-than and covers equivalence in a Hilbert lattice. ( chcv2 analog.) (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvr2.b B = Base K
cvr2.s < ˙ = < K
cvr2.j ˙ = join K
cvr2.c C = K
cvr2.a A = Atoms K
Assertion cvr2N K HL X B P A X < ˙ X ˙ P X C X ˙ P

Proof

Step Hyp Ref Expression
1 cvr2.b B = Base K
2 cvr2.s < ˙ = < K
3 cvr2.j ˙ = join K
4 cvr2.c C = K
5 cvr2.a A = Atoms K
6 hllat K HL K Lat
7 6 3ad2ant1 K HL X B P A K Lat
8 simp2 K HL X B P A X B
9 1 5 atbase P A P B
10 9 3ad2ant3 K HL X B P A P B
11 eqid K = K
12 1 11 2 3 latnle K Lat X B P B ¬ P K X X < ˙ X ˙ P
13 7 8 10 12 syl3anc K HL X B P A ¬ P K X X < ˙ X ˙ P
14 1 11 3 4 5 cvr1 K HL X B P A ¬ P K X X C X ˙ P
15 13 14 bitr3d K HL X B P A X < ˙ X ˙ P X C X ˙ P