Metamath Proof Explorer


Theorem cvrat2

Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 30-Nov-2011)

Ref Expression
Hypotheses cvrat2.b B = Base K
cvrat2.j ˙ = join K
cvrat2.c C = K
cvrat2.a A = Atoms K
Assertion cvrat2 K HL X B P A Q A P Q X C P ˙ Q X A

Proof

Step Hyp Ref Expression
1 cvrat2.b B = Base K
2 cvrat2.j ˙ = join K
3 cvrat2.c C = K
4 cvrat2.a A = Atoms K
5 eqid 0. K = 0. K
6 1 2 5 3 4 atcvrj0 K HL X B P A Q A X C P ˙ Q X = 0. K P = Q
7 6 3expa K HL X B P A Q A X C P ˙ Q X = 0. K P = Q
8 7 necon3bid K HL X B P A Q A X C P ˙ Q X 0. K P Q
9 simpl K HL X B P A Q A K HL
10 simpr1 K HL X B P A Q A X B
11 hllat K HL K Lat
12 11 adantr K HL X B P A Q A K Lat
13 simpr2 K HL X B P A Q A P A
14 1 4 atbase P A P B
15 13 14 syl K HL X B P A Q A P B
16 simpr3 K HL X B P A Q A Q A
17 1 4 atbase Q A Q B
18 16 17 syl K HL X B P A Q A Q B
19 1 2 latjcl K Lat P B Q B P ˙ Q B
20 12 15 18 19 syl3anc K HL X B P A Q A P ˙ Q B
21 eqid < K = < K
22 1 21 3 cvrlt K HL X B P ˙ Q B X C P ˙ Q X < K P ˙ Q
23 22 ex K HL X B P ˙ Q B X C P ˙ Q X < K P ˙ Q
24 9 10 20 23 syl3anc K HL X B P A Q A X C P ˙ Q X < K P ˙ Q
25 1 21 2 5 4 cvrat K HL X B P A Q A X 0. K X < K P ˙ Q X A
26 25 expcomd K HL X B P A Q A X < K P ˙ Q X 0. K X A
27 24 26 syld K HL X B P A Q A X C P ˙ Q X 0. K X A
28 27 imp K HL X B P A Q A X C P ˙ Q X 0. K X A
29 8 28 sylbird K HL X B P A Q A X C P ˙ Q P Q X A
30 29 ex K HL X B P A Q A X C P ˙ Q P Q X A
31 30 com23 K HL X B P A Q A P Q X C P ˙ Q X A
32 31 impd K HL X B P A Q A P Q X C P ˙ Q X A
33 32 3impia K HL X B P A Q A P Q X C P ˙ Q X A