| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrat3.b |
|
| 2 |
|
cvrat3.l |
|
| 3 |
|
cvrat3.j |
|
| 4 |
|
cvrat3.m |
|
| 5 |
|
cvrat3.a |
|
| 6 |
|
eqid |
|
| 7 |
1 2 3 6 5
|
cvr1 |
|
| 8 |
7
|
3adant3r2 |
|
| 9 |
8
|
biimpa |
|
| 10 |
9
|
adantrr |
|
| 11 |
|
hllat |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr2 |
|
| 14 |
1 5
|
atbase |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
simpr3 |
|
| 17 |
1 5
|
atbase |
|
| 18 |
16 17
|
syl |
|
| 19 |
1 3
|
latjcom |
|
| 20 |
12 15 18 19
|
syl3anc |
|
| 21 |
20
|
oveq2d |
|
| 22 |
|
simpr1 |
|
| 23 |
1 3
|
latjass |
|
| 24 |
12 22 18 15 23
|
syl13anc |
|
| 25 |
21 24
|
eqtr4d |
|
| 26 |
25
|
adantr |
|
| 27 |
1 3
|
latjcl |
|
| 28 |
12 22 18 27
|
syl3anc |
|
| 29 |
1 2 3
|
latjlej2 |
|
| 30 |
12 15 28 28 29
|
syl13anc |
|
| 31 |
30
|
imp |
|
| 32 |
26 31
|
eqbrtrd |
|
| 33 |
1 3
|
latjidm |
|
| 34 |
12 28 33
|
syl2anc |
|
| 35 |
34
|
adantr |
|
| 36 |
32 35
|
breqtrd |
|
| 37 |
|
simpl |
|
| 38 |
2 3 5
|
hlatlej2 |
|
| 39 |
37 13 16 38
|
syl3anc |
|
| 40 |
1 3
|
latjcl |
|
| 41 |
12 15 18 40
|
syl3anc |
|
| 42 |
1 2 3
|
latjlej2 |
|
| 43 |
12 18 41 22 42
|
syl13anc |
|
| 44 |
39 43
|
mpd |
|
| 45 |
44
|
adantr |
|
| 46 |
1 3
|
latjcl |
|
| 47 |
12 22 41 46
|
syl3anc |
|
| 48 |
1 2
|
latasymb |
|
| 49 |
12 47 28 48
|
syl3anc |
|
| 50 |
49
|
adantr |
|
| 51 |
36 45 50
|
mpbi2and |
|
| 52 |
51
|
breq2d |
|
| 53 |
52
|
adantrl |
|
| 54 |
10 53
|
mpbird |
|
| 55 |
54
|
ex |
|
| 56 |
1 3 4 6
|
cvrexch |
|
| 57 |
37 22 41 56
|
syl3anc |
|
| 58 |
55 57
|
sylibrd |
|
| 59 |
58
|
adantr |
|
| 60 |
1 4
|
latmcl |
|
| 61 |
12 22 41 60
|
syl3anc |
|
| 62 |
1 3 6 5
|
cvrat2 |
|
| 63 |
62
|
3expia |
|
| 64 |
37 61 13 16 63
|
syl13anc |
|
| 65 |
64
|
expdimp |
|
| 66 |
59 65
|
syld |
|
| 67 |
66
|
exp4b |
|
| 68 |
67
|
3impd |
|