Metamath Proof Explorer


Theorem cvrat42

Description: Commuted version of cvrat4 . (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses cvrat4.b B = Base K
cvrat4.l ˙ = K
cvrat4.j ˙ = join K
cvrat4.z 0 ˙ = 0. K
cvrat4.a A = Atoms K
Assertion cvrat42 K HL X B P A Q A X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ r ˙ Q

Proof

Step Hyp Ref Expression
1 cvrat4.b B = Base K
2 cvrat4.l ˙ = K
3 cvrat4.j ˙ = join K
4 cvrat4.z 0 ˙ = 0. K
5 cvrat4.a A = Atoms K
6 1 2 3 4 5 cvrat4 K HL X B P A Q A X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
7 hllat K HL K Lat
8 7 ad2antrr K HL X B P A Q A r A K Lat
9 simplr3 K HL X B P A Q A r A Q A
10 1 5 atbase Q A Q B
11 9 10 syl K HL X B P A Q A r A Q B
12 1 5 atbase r A r B
13 12 adantl K HL X B P A Q A r A r B
14 1 3 latjcom K Lat Q B r B Q ˙ r = r ˙ Q
15 8 11 13 14 syl3anc K HL X B P A Q A r A Q ˙ r = r ˙ Q
16 15 breq2d K HL X B P A Q A r A P ˙ Q ˙ r P ˙ r ˙ Q
17 16 anbi2d K HL X B P A Q A r A r ˙ X P ˙ Q ˙ r r ˙ X P ˙ r ˙ Q
18 17 rexbidva K HL X B P A Q A r A r ˙ X P ˙ Q ˙ r r A r ˙ X P ˙ r ˙ Q
19 6 18 sylibd K HL X B P A Q A X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ r ˙ Q