Metamath Proof Explorer


Theorem cvratlem

Description: Lemma for cvrat . ( atcvatlem analog.) (Contributed by NM, 22-Nov-2011)

Ref Expression
Hypotheses cvrat.b B = Base K
cvrat.s < ˙ = < K
cvrat.j ˙ = join K
cvrat.z 0 ˙ = 0. K
cvrat.a A = Atoms K
Assertion cvratlem K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q ¬ P K X X A

Proof

Step Hyp Ref Expression
1 cvrat.b B = Base K
2 cvrat.s < ˙ = < K
3 cvrat.j ˙ = join K
4 cvrat.z 0 ˙ = 0. K
5 cvrat.a A = Atoms K
6 hlatl K HL K AtLat
7 6 adantr K HL X B P A Q A K AtLat
8 simpr1 K HL X B P A Q A X B
9 eqid K = K
10 1 9 4 5 atlex K AtLat X B X 0 ˙ r A r K X
11 10 3expia K AtLat X B X 0 ˙ r A r K X
12 7 8 11 syl2anc K HL X B P A Q A X 0 ˙ r A r K X
13 6 3ad2ant1 K HL X B P A Q A r A K AtLat
14 simp22 K HL X B P A Q A r A P A
15 simp3 K HL X B P A Q A r A r A
16 9 5 atcmp K AtLat P A r A P K r P = r
17 13 14 15 16 syl3anc K HL X B P A Q A r A P K r P = r
18 breq1 P = r P K X r K X
19 18 biimprd P = r r K X P K X
20 17 19 syl6bi K HL X B P A Q A r A P K r r K X P K X
21 20 com23 K HL X B P A Q A r A r K X P K r P K X
22 con3 P K r P K X ¬ P K X ¬ P K r
23 21 22 syl6 K HL X B P A Q A r A r K X ¬ P K X ¬ P K r
24 23 impd K HL X B P A Q A r A r K X ¬ P K X ¬ P K r
25 simp1 K HL X B P A Q A r A K HL
26 1 5 atbase r A r B
27 26 3ad2ant3 K HL X B P A Q A r A r B
28 eqid K = K
29 1 9 3 28 5 cvr1 K HL r B P A ¬ P K r r K r ˙ P
30 25 27 14 29 syl3anc K HL X B P A Q A r A ¬ P K r r K r ˙ P
31 24 30 sylibd K HL X B P A Q A r A r K X ¬ P K X r K r ˙ P
32 31 imp K HL X B P A Q A r A r K X ¬ P K X r K r ˙ P
33 hllat K HL K Lat
34 33 3ad2ant1 K HL X B P A Q A r A K Lat
35 1 5 atbase P A P B
36 14 35 syl K HL X B P A Q A r A P B
37 1 3 latjcom K Lat P B r B P ˙ r = r ˙ P
38 34 36 27 37 syl3anc K HL X B P A Q A r A P ˙ r = r ˙ P
39 38 adantr K HL X B P A Q A r A r K X ¬ P K X P ˙ r = r ˙ P
40 32 39 breqtrrd K HL X B P A Q A r A r K X ¬ P K X r K P ˙ r
41 40 adantrrl K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X r K P ˙ r
42 9 3 5 hlatlej1 K HL P A r A P K P ˙ r
43 25 14 15 42 syl3anc K HL X B P A Q A r A P K P ˙ r
44 43 adantr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P K P ˙ r
45 9 5 atcmp K AtLat r A P A r K P r = P
46 13 15 14 45 syl3anc K HL X B P A Q A r A r K P r = P
47 breq1 r = P r K X P K X
48 47 biimpd r = P r K X P K X
49 46 48 syl6bi K HL X B P A Q A r A r K P r K X P K X
50 49 com23 K HL X B P A Q A r A r K X r K P P K X
51 con3 r K P P K X ¬ P K X ¬ r K P
52 50 51 syl6 K HL X B P A Q A r A r K X ¬ P K X ¬ r K P
53 52 imp32 K HL X B P A Q A r A r K X ¬ P K X ¬ r K P
54 53 adantrrl K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X ¬ r K P
55 simprl K HL X B P A Q A r A r K X X < ˙ P ˙ Q r K X
56 simp21 K HL X B P A Q A r A X B
57 simp23 K HL X B P A Q A r A Q A
58 1 5 atbase Q A Q B
59 57 58 syl K HL X B P A Q A r A Q B
60 1 3 latjcl K Lat P B Q B P ˙ Q B
61 34 36 59 60 syl3anc K HL X B P A Q A r A P ˙ Q B
62 25 56 61 3jca K HL X B P A Q A r A K HL X B P ˙ Q B
63 9 2 pltle K HL X B P ˙ Q B X < ˙ P ˙ Q X K P ˙ Q
64 63 imp K HL X B P ˙ Q B X < ˙ P ˙ Q X K P ˙ Q
65 62 64 sylan K HL X B P A Q A r A X < ˙ P ˙ Q X K P ˙ Q
66 65 adantrl K HL X B P A Q A r A r K X X < ˙ P ˙ Q X K P ˙ Q
67 hlpos K HL K Poset
68 67 3ad2ant1 K HL X B P A Q A r A K Poset
69 1 9 postr K Poset r B X B P ˙ Q B r K X X K P ˙ Q r K P ˙ Q
70 68 27 56 61 69 syl13anc K HL X B P A Q A r A r K X X K P ˙ Q r K P ˙ Q
71 70 adantr K HL X B P A Q A r A r K X X < ˙ P ˙ Q r K X X K P ˙ Q r K P ˙ Q
72 55 66 71 mp2and K HL X B P A Q A r A r K X X < ˙ P ˙ Q r K P ˙ Q
73 72 adantrrr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X r K P ˙ Q
74 1 9 3 5 hlexch1 K HL r A Q A P B ¬ r K P r K P ˙ Q Q K P ˙ r
75 74 3expia K HL r A Q A P B ¬ r K P r K P ˙ Q Q K P ˙ r
76 75 impd K HL r A Q A P B ¬ r K P r K P ˙ Q Q K P ˙ r
77 25 15 57 36 76 syl13anc K HL X B P A Q A r A ¬ r K P r K P ˙ Q Q K P ˙ r
78 77 adantr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X ¬ r K P r K P ˙ Q Q K P ˙ r
79 54 73 78 mp2and K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X Q K P ˙ r
80 1 3 latjcl K Lat P B r B P ˙ r B
81 34 36 27 80 syl3anc K HL X B P A Q A r A P ˙ r B
82 1 9 3 latjle12 K Lat P B Q B P ˙ r B P K P ˙ r Q K P ˙ r P ˙ Q K P ˙ r
83 34 36 59 81 82 syl13anc K HL X B P A Q A r A P K P ˙ r Q K P ˙ r P ˙ Q K P ˙ r
84 83 adantr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P K P ˙ r Q K P ˙ r P ˙ Q K P ˙ r
85 44 79 84 mpbi2and K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P ˙ Q K P ˙ r
86 9 3 5 hlatlej1 K HL P A Q A P K P ˙ Q
87 25 14 57 86 syl3anc K HL X B P A Q A r A P K P ˙ Q
88 87 adantr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P K P ˙ Q
89 1 9 3 latjle12 K Lat P B r B P ˙ Q B P K P ˙ Q r K P ˙ Q P ˙ r K P ˙ Q
90 34 36 27 61 89 syl13anc K HL X B P A Q A r A P K P ˙ Q r K P ˙ Q P ˙ r K P ˙ Q
91 90 adantr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P K P ˙ Q r K P ˙ Q P ˙ r K P ˙ Q
92 88 73 91 mpbi2and K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P ˙ r K P ˙ Q
93 34 61 81 3jca K HL X B P A Q A r A K Lat P ˙ Q B P ˙ r B
94 93 adantr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X K Lat P ˙ Q B P ˙ r B
95 1 9 latasymb K Lat P ˙ Q B P ˙ r B P ˙ Q K P ˙ r P ˙ r K P ˙ Q P ˙ Q = P ˙ r
96 94 95 syl K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P ˙ Q K P ˙ r P ˙ r K P ˙ Q P ˙ Q = P ˙ r
97 85 92 96 mpbi2and K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P ˙ Q = P ˙ r
98 breq2 P ˙ Q = P ˙ r X < ˙ P ˙ Q X < ˙ P ˙ r
99 98 biimpcd X < ˙ P ˙ Q P ˙ Q = P ˙ r X < ˙ P ˙ r
100 99 adantr X < ˙ P ˙ Q ¬ P K X P ˙ Q = P ˙ r X < ˙ P ˙ r
101 100 ad2antll K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X P ˙ Q = P ˙ r X < ˙ P ˙ r
102 97 101 mpd K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X X < ˙ P ˙ r
103 1 9 2 28 cvrnbtwn3 K Poset r B P ˙ r B X B r K P ˙ r r K X X < ˙ P ˙ r r = X
104 103 biimpd K Poset r B P ˙ r B X B r K P ˙ r r K X X < ˙ P ˙ r r = X
105 104 3expia K Poset r B P ˙ r B X B r K P ˙ r r K X X < ˙ P ˙ r r = X
106 68 27 81 56 105 syl13anc K HL X B P A Q A r A r K P ˙ r r K X X < ˙ P ˙ r r = X
107 106 exp4a K HL X B P A Q A r A r K P ˙ r r K X X < ˙ P ˙ r r = X
108 107 com23 K HL X B P A Q A r A r K X r K P ˙ r X < ˙ P ˙ r r = X
109 108 imp4b K HL X B P A Q A r A r K X r K P ˙ r X < ˙ P ˙ r r = X
110 109 adantrr K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X r K P ˙ r X < ˙ P ˙ r r = X
111 41 102 110 mp2and K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X r = X
112 simpl3 K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X r A
113 111 112 eqeltrrd K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X X A
114 113 exp45 K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X X A
115 114 3expa K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X X A
116 115 rexlimdva K HL X B P A Q A r A r K X X < ˙ P ˙ Q ¬ P K X X A
117 12 116 syld K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q ¬ P K X X A
118 117 imp32 K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q ¬ P K X X A