| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvrexch.b |  | 
						
							| 2 |  | cvrexch.j |  | 
						
							| 3 |  | cvrexch.m |  | 
						
							| 4 |  | cvrexch.c |  | 
						
							| 5 |  | hllat |  | 
						
							| 6 | 1 3 | latmcl |  | 
						
							| 7 | 5 6 | syl3an1 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 1 8 4 | cvrlt |  | 
						
							| 10 | 9 | ex |  | 
						
							| 11 | 7 10 | syld3an2 |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 1 12 8 13 | hlrelat1 |  | 
						
							| 15 | 7 14 | syld3an2 |  | 
						
							| 16 | 11 15 | syld |  | 
						
							| 17 | 16 | imp |  | 
						
							| 18 |  | simpl1 |  | 
						
							| 19 | 18 | hllatd |  | 
						
							| 20 | 1 13 | atbase |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | simpl2 |  | 
						
							| 23 |  | simpl3 |  | 
						
							| 24 | 1 12 3 | latlem12 |  | 
						
							| 25 | 19 21 22 23 24 | syl13anc |  | 
						
							| 26 | 25 | biimpd |  | 
						
							| 27 | 26 | expcomd |  | 
						
							| 28 |  | con3 |  | 
						
							| 29 | 27 28 | syl6 |  | 
						
							| 30 | 29 | com23 |  | 
						
							| 31 | 30 | a1d |  | 
						
							| 32 | 31 | imp4d |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 1 12 2 4 13 | cvr1 |  | 
						
							| 35 | 18 22 33 34 | syl3anc |  | 
						
							| 36 | 32 35 | sylibd |  | 
						
							| 37 | 36 | imp |  | 
						
							| 38 |  | simpl1 |  | 
						
							| 39 | 38 | hllatd |  | 
						
							| 40 |  | simpl2 |  | 
						
							| 41 |  | simpl3 |  | 
						
							| 42 | 39 40 41 6 | syl3anc |  | 
						
							| 43 |  | simpr |  | 
						
							| 44 | 1 2 | latjass |  | 
						
							| 45 | 39 40 42 43 44 | syl13anc |  | 
						
							| 46 | 1 2 3 | latabs1 |  | 
						
							| 47 | 5 46 | syl3an1 |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 48 | oveq1d |  | 
						
							| 50 | 45 49 | eqtr3d |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 1 12 8 2 | latnle |  | 
						
							| 53 | 39 42 43 52 | syl3anc |  | 
						
							| 54 | 1 12 3 | latmle2 |  | 
						
							| 55 | 39 40 41 54 | syl3anc |  | 
						
							| 56 | 55 | biantrurd |  | 
						
							| 57 | 1 12 2 | latjle12 |  | 
						
							| 58 | 39 42 43 41 57 | syl13anc |  | 
						
							| 59 | 56 58 | bitrd |  | 
						
							| 60 | 53 59 | anbi12d |  | 
						
							| 61 |  | hlpos |  | 
						
							| 62 | 38 61 | syl |  | 
						
							| 63 | 1 2 | latjcl |  | 
						
							| 64 | 39 42 43 63 | syl3anc |  | 
						
							| 65 | 42 41 64 | 3jca |  | 
						
							| 66 | 1 12 8 4 | cvrnbtwn2 |  | 
						
							| 67 | 66 | biimpd |  | 
						
							| 68 | 67 | 3exp |  | 
						
							| 69 | 62 65 68 | sylc |  | 
						
							| 70 | 69 | com23 |  | 
						
							| 71 | 60 70 | sylbid |  | 
						
							| 72 | 71 | com23 |  | 
						
							| 73 | 72 | imp32 |  | 
						
							| 74 | 73 | oveq2d |  | 
						
							| 75 | 51 74 | eqtr3d |  | 
						
							| 76 | 20 75 | sylanl2 |  | 
						
							| 77 | 37 76 | breqtrd |  | 
						
							| 78 | 77 | expr |  | 
						
							| 79 | 78 | an32s |  | 
						
							| 80 | 79 | rexlimdva |  | 
						
							| 81 | 17 80 | mpd |  | 
						
							| 82 | 81 | ex |  |