Metamath Proof Explorer


Theorem cvrle

Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses cvrle.b B = Base K
cvrle.l ˙ = K
cvrle.c C = K
Assertion cvrle K A X B Y B X C Y X ˙ Y

Proof

Step Hyp Ref Expression
1 cvrle.b B = Base K
2 cvrle.l ˙ = K
3 cvrle.c C = K
4 eqid < K = < K
5 1 4 3 cvrlt K A X B Y B X C Y X < K Y
6 2 4 pltval K A X B Y B X < K Y X ˙ Y X Y
7 6 simprbda K A X B Y B X < K Y X ˙ Y
8 5 7 syldan K A X B Y B X C Y X ˙ Y