Metamath Proof Explorer


Theorem cvrlt

Description: The covers relation implies the less-than relation. ( cvpss analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses cvrfval.b B = Base K
cvrfval.s < ˙ = < K
cvrfval.c C = K
Assertion cvrlt K A X B Y B X C Y X < ˙ Y

Proof

Step Hyp Ref Expression
1 cvrfval.b B = Base K
2 cvrfval.s < ˙ = < K
3 cvrfval.c C = K
4 1 2 3 cvrval K A X B Y B X C Y X < ˙ Y ¬ z B X < ˙ z z < ˙ Y
5 4 simprbda K A X B Y B X C Y X < ˙ Y