Metamath Proof Explorer


Theorem cvrnbtwn4

Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. ( cvnbtwn4 analog.) (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses cvrle.b B=BaseK
cvrle.l ˙=K
cvrle.c C=K
Assertion cvrnbtwn4 KPosetXBYBZBXCYX˙ZZ˙YX=ZZ=Y

Proof

Step Hyp Ref Expression
1 cvrle.b B=BaseK
2 cvrle.l ˙=K
3 cvrle.c C=K
4 eqid <K=<K
5 1 4 3 cvrnbtwn KPosetXBYBZBXCY¬X<KZZ<KY
6 iman X˙ZZ˙YX=ZZ=Y¬X˙ZZ˙Y¬X=ZZ=Y
7 neanior XZZY¬X=ZZ=Y
8 7 anbi2i X˙ZZ˙YXZZYX˙ZZ˙Y¬X=ZZ=Y
9 an4 X˙ZZ˙YXZZYX˙ZXZZ˙YZY
10 8 9 bitr3i X˙ZZ˙Y¬X=ZZ=YX˙ZXZZ˙YZY
11 2 4 pltval KPosetXBZBX<KZX˙ZXZ
12 11 3adant3r2 KPosetXBYBZBX<KZX˙ZXZ
13 2 4 pltval KPosetZBYBZ<KYZ˙YZY
14 13 3com23 KPosetYBZBZ<KYZ˙YZY
15 14 3adant3r1 KPosetXBYBZBZ<KYZ˙YZY
16 12 15 anbi12d KPosetXBYBZBX<KZZ<KYX˙ZXZZ˙YZY
17 10 16 bitr4id KPosetXBYBZBX˙ZZ˙Y¬X=ZZ=YX<KZZ<KY
18 17 notbid KPosetXBYBZB¬X˙ZZ˙Y¬X=ZZ=Y¬X<KZZ<KY
19 6 18 bitr2id KPosetXBYBZB¬X<KZZ<KYX˙ZZ˙YX=ZZ=Y
20 19 3adant3 KPosetXBYBZBXCY¬X<KZZ<KYX˙ZZ˙YX=ZZ=Y
21 5 20 mpbid KPosetXBYBZBXCYX˙ZZ˙YX=ZZ=Y
22 1 2 posref KPosetZBZ˙Z
23 22 3ad2antr3 KPosetXBYBZBZ˙Z
24 23 3adant3 KPosetXBYBZBXCYZ˙Z
25 breq1 X=ZX˙ZZ˙Z
26 24 25 syl5ibrcom KPosetXBYBZBXCYX=ZX˙Z
27 1 2 3 cvrle KPosetXBYBXCYX˙Y
28 27 ex KPosetXBYBXCYX˙Y
29 28 3adant3r3 KPosetXBYBZBXCYX˙Y
30 29 3impia KPosetXBYBZBXCYX˙Y
31 breq2 Z=YX˙ZX˙Y
32 30 31 syl5ibrcom KPosetXBYBZBXCYZ=YX˙Z
33 26 32 jaod KPosetXBYBZBXCYX=ZZ=YX˙Z
34 breq1 X=ZX˙YZ˙Y
35 30 34 syl5ibcom KPosetXBYBZBXCYX=ZZ˙Y
36 breq2 Z=YZ˙ZZ˙Y
37 24 36 syl5ibcom KPosetXBYBZBXCYZ=YZ˙Y
38 35 37 jaod KPosetXBYBZBXCYX=ZZ=YZ˙Y
39 33 38 jcad KPosetXBYBZBXCYX=ZZ=YX˙ZZ˙Y
40 21 39 impbid KPosetXBYBZBXCYX˙ZZ˙YX=ZZ=Y