Metamath Proof Explorer


Theorem cvrne

Description: The covers relation implies inequality. (Contributed by NM, 13-Oct-2011)

Ref Expression
Hypotheses cvrne.b B = Base K
cvrne.c C = K
Assertion cvrne K A X B Y B X C Y X Y

Proof

Step Hyp Ref Expression
1 cvrne.b B = Base K
2 cvrne.c C = K
3 eqid < K = < K
4 1 3 2 cvrlt K A X B Y B X C Y X < K Y
5 eqid K = K
6 5 3 pltval K A X B Y B X < K Y X K Y X Y
7 6 simplbda K A X B Y B X < K Y X Y
8 4 7 syldan K A X B Y B X C Y X Y