Metamath Proof Explorer


Theorem cvrnrefN

Description: The covers relation is not reflexive. ( cvnref analog.) (Contributed by NM, 1-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvrne.b B = Base K
cvrne.c C = K
Assertion cvrnrefN K A X B ¬ X C X

Proof

Step Hyp Ref Expression
1 cvrne.b B = Base K
2 cvrne.c C = K
3 eqid X = X
4 simpll K A X B X C X K A
5 simplr K A X B X C X X B
6 simpr K A X B X C X X C X
7 1 2 cvrne K A X B X B X C X X X
8 4 5 5 6 7 syl31anc K A X B X C X X X
9 8 ex K A X B X C X X X
10 9 necon2bd K A X B X = X ¬ X C X
11 3 10 mpi K A X B ¬ X C X