Metamath Proof Explorer


Theorem cvrntr

Description: The covers relation is not transitive. ( cvntr analog.) (Contributed by NM, 18-Jun-2012)

Ref Expression
Hypotheses cvrntr.b B = Base K
cvrntr.c C = K
Assertion cvrntr K A X B Y B Z B X C Y Y C Z ¬ X C Z

Proof

Step Hyp Ref Expression
1 cvrntr.b B = Base K
2 cvrntr.c C = K
3 eqid < K = < K
4 1 3 2 cvrlt K A X B Y B X C Y X < K Y
5 4 ex K A X B Y B X C Y X < K Y
6 5 3adant3r3 K A X B Y B Z B X C Y X < K Y
7 1 3 2 ltcvrntr K A X B Y B Z B X < K Y Y C Z ¬ X C Z
8 6 7 syland K A X B Y B Z B X C Y Y C Z ¬ X C Z