Metamath Proof Explorer


Theorem cvrp

Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM, 18-Nov-2011)

Ref Expression
Hypotheses cvrp.b B = Base K
cvrp.j ˙ = join K
cvrp.m ˙ = meet K
cvrp.z 0 ˙ = 0. K
cvrp.c C = K
cvrp.a A = Atoms K
Assertion cvrp K HL X B P A X ˙ P = 0 ˙ X C X ˙ P

Proof

Step Hyp Ref Expression
1 cvrp.b B = Base K
2 cvrp.j ˙ = join K
3 cvrp.m ˙ = meet K
4 cvrp.z 0 ˙ = 0. K
5 cvrp.c C = K
6 cvrp.a A = Atoms K
7 hlomcmcv K HL K OML K CLat K CvLat
8 1 2 3 4 5 6 cvlcvrp K OML K CLat K CvLat X B P A X ˙ P = 0 ˙ X C X ˙ P
9 7 8 syl3an1 K HL X B P A X ˙ P = 0 ˙ X C X ˙ P