Metamath Proof Explorer


Theorem cvsclm

Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypothesis cvslvec.1 φ W ℂVec
Assertion cvsclm φ W CMod

Proof

Step Hyp Ref Expression
1 cvslvec.1 φ W ℂVec
2 df-cvs ℂVec = CMod LVec
3 2 elin2 W ℂVec W CMod W LVec
4 3 simplbi W ℂVec W CMod
5 1 4 syl φ W CMod