Metamath Proof Explorer


Theorem cvsdivcl

Description: The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypotheses cvsdiv.f F = Scalar W
cvsdiv.k K = Base F
Assertion cvsdivcl W ℂVec A K B K B 0 A B K

Proof

Step Hyp Ref Expression
1 cvsdiv.f F = Scalar W
2 cvsdiv.k K = Base F
3 1 2 cvsdiv W ℂVec A K B K B 0 A B = A / r F B
4 simpl W ℂVec A K B K B 0 W ℂVec
5 4 cvslvec W ℂVec A K B K B 0 W LVec
6 1 lvecdrng W LVec F DivRing
7 drngring F DivRing F Ring
8 5 6 7 3syl W ℂVec A K B K B 0 F Ring
9 simpr1 W ℂVec A K B K B 0 A K
10 simpr2 W ℂVec A K B K B 0 B K
11 simpr3 W ℂVec A K B K B 0 B 0
12 eldifsn B K 0 B K B 0
13 10 11 12 sylanbrc W ℂVec A K B K B 0 B K 0
14 1 2 cvsunit W ℂVec K 0 = Unit F
15 14 adantr W ℂVec A K B K B 0 K 0 = Unit F
16 13 15 eleqtrd W ℂVec A K B K B 0 B Unit F
17 eqid Unit F = Unit F
18 eqid / r F = / r F
19 2 17 18 dvrcl F Ring A K B Unit F A / r F B K
20 8 9 16 19 syl3anc W ℂVec A K B K B 0 A / r F B K
21 3 20 eqeltrd W ℂVec A K B K B 0 A B K