Metamath Proof Explorer


Theorem cvsunit

Description: Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypotheses cvsdiv.f F = Scalar W
cvsdiv.k K = Base F
Assertion cvsunit W ℂVec K 0 = Unit F

Proof

Step Hyp Ref Expression
1 cvsdiv.f F = Scalar W
2 cvsdiv.k K = Base F
3 id W ℂVec W ℂVec
4 3 cvsclm W ℂVec W CMod
5 1 clm0 W CMod 0 = 0 F
6 4 5 syl W ℂVec 0 = 0 F
7 6 sneqd W ℂVec 0 = 0 F
8 7 difeq2d W ℂVec K 0 = K 0 F
9 3 cvslvec W ℂVec W LVec
10 1 lvecdrng W LVec F DivRing
11 eqid Unit F = Unit F
12 eqid 0 F = 0 F
13 2 11 12 isdrng F DivRing F Ring Unit F = K 0 F
14 13 simprbi F DivRing Unit F = K 0 F
15 9 10 14 3syl W ℂVec Unit F = K 0 F
16 8 15 eqtr4d W ℂVec K 0 = Unit F