Step |
Hyp |
Ref |
Expression |
1 |
|
cvxcl.1 |
|
2 |
|
cvxcl.2 |
|
3 |
2
|
ralrimivva |
|
4 |
3
|
ad2antrr |
|
5 |
|
simpr1 |
|
6 |
|
simpr2 |
|
7 |
|
oveq1 |
|
8 |
7
|
sseq1d |
|
9 |
|
oveq2 |
|
10 |
9
|
sseq1d |
|
11 |
8 10
|
rspc2v |
|
12 |
5 6 11
|
syl2anc |
|
13 |
12
|
adantr |
|
14 |
4 13
|
mpd |
|
15 |
|
ax-1cn |
|
16 |
|
unitssre |
|
17 |
|
simpr3 |
|
18 |
16 17
|
sselid |
|
19 |
18
|
recnd |
|
20 |
|
nncan |
|
21 |
15 19 20
|
sylancr |
|
22 |
21
|
oveq1d |
|
23 |
22
|
oveq1d |
|
24 |
23
|
adantr |
|
25 |
1
|
adantr |
|
26 |
25 5
|
sseldd |
|
27 |
26
|
adantr |
|
28 |
25 6
|
sseldd |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
|
simplr3 |
|
32 |
|
iirev |
|
33 |
31 32
|
syl |
|
34 |
|
lincmb01cmp |
|
35 |
27 29 30 33 34
|
syl31anc |
|
36 |
24 35
|
eqeltrrd |
|
37 |
14 36
|
sseldd |
|
38 |
|
oveq2 |
|
39 |
38
|
oveq1d |
|
40 |
|
pncan3 |
|
41 |
19 15 40
|
sylancl |
|
42 |
41
|
oveq1d |
|
43 |
|
1re |
|
44 |
|
resubcl |
|
45 |
43 18 44
|
sylancr |
|
46 |
45
|
recnd |
|
47 |
28
|
recnd |
|
48 |
19 46 47
|
adddird |
|
49 |
47
|
mulid2d |
|
50 |
42 48 49
|
3eqtr3d |
|
51 |
39 50
|
sylan9eqr |
|
52 |
6
|
adantr |
|
53 |
51 52
|
eqeltrd |
|
54 |
3
|
ad2antrr |
|
55 |
|
oveq1 |
|
56 |
55
|
sseq1d |
|
57 |
|
oveq2 |
|
58 |
57
|
sseq1d |
|
59 |
56 58
|
rspc2v |
|
60 |
6 5 59
|
syl2anc |
|
61 |
60
|
adantr |
|
62 |
54 61
|
mpd |
|
63 |
26
|
recnd |
|
64 |
19 63
|
mulcld |
|
65 |
46 47
|
mulcld |
|
66 |
64 65
|
addcomd |
|
67 |
66
|
adantr |
|
68 |
28
|
adantr |
|
69 |
26
|
adantr |
|
70 |
|
simpr |
|
71 |
|
simplr3 |
|
72 |
|
lincmb01cmp |
|
73 |
68 69 70 71 72
|
syl31anc |
|
74 |
67 73
|
eqeltrd |
|
75 |
62 74
|
sseldd |
|
76 |
26 28
|
lttri4d |
|
77 |
37 53 75 76
|
mpjao3dan |
|