Step |
Hyp |
Ref |
Expression |
1 |
|
cxp111d.a |
|
2 |
|
cxp111d.b |
|
3 |
|
cxp111d.c |
|
4 |
|
cxp111d.1 |
|
5 |
|
cxp111d.2 |
|
6 |
|
cxp111d.3 |
|
7 |
1 4 3
|
cxpefd |
|
8 |
2 5 3
|
cxpefd |
|
9 |
7 8
|
eqeq12d |
|
10 |
1 4
|
logcld |
|
11 |
3 10
|
mulcld |
|
12 |
2 5
|
logcld |
|
13 |
3 12
|
mulcld |
|
14 |
11 13
|
ef11d |
|
15 |
11
|
adantr |
|
16 |
13
|
adantr |
|
17 |
|
ax-icn |
|
18 |
|
2cn |
|
19 |
|
picn |
|
20 |
18 19
|
mulcli |
|
21 |
17 20
|
mulcli |
|
22 |
21
|
a1i |
|
23 |
|
zcn |
|
24 |
23
|
adantl |
|
25 |
22 24
|
mulcld |
|
26 |
16 25
|
addcld |
|
27 |
3
|
adantr |
|
28 |
6
|
adantr |
|
29 |
|
div11 |
|
30 |
15 26 27 28 29
|
syl112anc |
|
31 |
10 3 6
|
divcan3d |
|
32 |
31
|
adantr |
|
33 |
16 25 27 28
|
divdird |
|
34 |
12 3 6
|
divcan3d |
|
35 |
34
|
adantr |
|
36 |
35
|
oveq1d |
|
37 |
33 36
|
eqtrd |
|
38 |
32 37
|
eqeq12d |
|
39 |
30 38
|
bitr3d |
|
40 |
39
|
rexbidva |
|
41 |
9 14 40
|
3bitrd |
|